簡易檢索 / 詳目顯示

研究生: 許孝華
Hsu, Hsiao-Hua
論文名稱: 基於氧化鈮之質子型電子突觸在仿神經行為運算中寫入與抹除行為之研究
Investigation on Programming and Erasing Behaviors of Protonic Niobium Oxide-based Electrical Synapse for Neuromorphic Computing Applications
指導教授: 劉全璞
Liu, Chuan-Pu
共同指導教授: 王超鴻
Wang, Chao-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 81
中文關鍵詞: 氧化鈮質子型電子突觸電化學憶阻器仿神經行為運算
外文關鍵詞: Niobium Oxide, Protonic Electrical Synapse, Electrochemical Memristor, Neuromorphic Computing
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究聚焦於氧化鈮薄膜之質子型電化學憶阻器元件在仿神經運算行為中的寫入與抹除行為,利用濺鍍法生長氧化鈮薄膜,並製成氧化鈮薄膜憶阻器元件。此元件主要包含以鄰苯二甲酸氫鉀溶液作為質子的來源及氧化鈮薄膜作為反應層之電化學憶阻器。本研究利用外加電場,使溶液中之質子嵌入或嵌出氧化鈮薄膜並與之發生反應,進而改變氧化鈮薄膜之電阻值,實驗結果揭示氧化鈮之質子型電化學憶阻器元件在仿神經運算行為之電子神經突觸的應用潛力。
    本實驗透過掃描式電子顯微鏡與原子力顯微鏡比較氧化鈮薄膜在質子嵌入前後,薄膜表面形貌與粗糙度之差異。利用穿透式電子顯微鏡觀察氧化鈮薄膜在質子嵌入後之微結構變化。也透過電性量測搭配XPS分析,比較質子嵌入前與嵌入後之氧化鈮薄膜憶阻器元件,觀察到溶液中之質子與氧化鈮之氧原子產生鍵結,同時部分鈮原子之價數從+5變為+4。最後運用光激螢光分析氧化鈮薄膜之缺陷對質子嵌入與電性量測的影響。

    This study focuses on the write and erase behaviors of a protonic electrochemical memristor device based on niobium oxide thin films in neuromorphic computing applications. Niobium oxide thin films were grown using sputtering techniques, and memristor devices were fabricated from these films. The device primarily consists of an electrochemical memristor with potassium hydrogen phthalate (KHP) solution as the proton source and niobium oxide thin films as the reactive layer. By applying an external electric field, protons from the solution are inserted into or extracted from the niobium oxide thin films, altering their resistance. The experimental results reveal the potential of proton-type electrochemical niobium oxide memristors for applications as artificial synapses in neuromorphic computing.
    In this experiment, the surface morphology and roughness of the niobium oxide thin films were compared before and after proton insertion using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Transmission electron microscopy (TEM) was employed to observe the microstructural changes in the niobium oxide thin films after proton insertion. Additionally, electrical measurements combined with X-ray photoelectron spectroscopy (XPS) analysis were used to compare the niobium oxide memristor devices before and after proton insertion. It was observed that protons from the solution bonded with oxygen atoms in the niobium oxide, and some niobium atoms' oxidation states changed from +5 to +4. Finally, photoluminescence (PL) analysis was utilized to study the effects of defects in the niobium oxide thin films on proton insertion and electrical measurements.

    摘要 I Extended Abstract II 致謝 IX 目錄 XI 圖目錄 XIV 表目錄 XVIII 第一章 簡介與研究目的 1 1.1 仿神經運算簡介 1 1.1.1 人腦運作模式 1 1.1.2 仿神經行為運算架構 3 1.1.3 生物神經突觸行為 - STDP 5 1.1.4 電子神經突觸行為 - Spikes-conductance correlation 7 第二章 理論基礎與其它參考 8 2.1 電子神經突觸種類與簡介 8 2.1.1 電阻式記憶體 (Resistive Random Access Memory, RRAM) 做為電子神經突觸元件 8 2.1.2 相變化記憶體 (Phase Change Random Access Memory, PCRAM) 做為電子神經突觸元件 11 2.1.3 導橋式記憶體 (Conductive Bridge Random Access Memory, CBRAM) 做為電子神經突觸元件 13 2.1.4 鐵電記憶體與鐵電電晶體 (Ferroelectric Random Access Memory, FeRAM, and Ferroelectric Field-Effect Transistor, FeFET) 做為電子神經突觸元件 16 2.1.5 電化學記憶體 (Electrochemical Random Access Memory, ECRAM) 做為電子神經突觸元件 19 2.2 質子型電子突觸 21 2.2.1 氧化鎢之質子型電子突觸 21 2.2.2 氧化鈮與質子之反應 23 2.3 研究動機與材料選定 25 第三章 研究方法 27 3.1 研究流程 27 3.1.1 氧化鈮濺鍍鍍膜 27 3.1.2 憶阻器元件之製作 27 3.1.3 憶阻器元件結構圖及照片 28 3.2 電性量測 30 3.3 材料分析儀器 32 3.3.1 模組式恆電位儀/電流儀 32 3.3.2 X光繞射儀 (X-ray diffractometer, XRD) 33 3.3.3 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 34 3.3.4 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 36 3.3.5 光激螢光光譜儀 (Photoluminescence, PL) 37 3.3.6 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 38 3.3.7 原子力顯微鏡 (Atomic Force Microscope, AFM) 39 第四章 結果與討論 40 4.1 寫入與抹除測試 (Program/Erase test) 40 4.2 SEM表面形貌 45 4.3 AFM表面形貌與粗糙度分析 47 4.4 材料結晶性分析 48 4.5 TEM微結構觀測 49 4.6 質子嵌入氧化鈮薄膜之證據 50 4.7 溶液中其他離子之貢獻 54 4.8 氧化鈮薄膜中缺陷之影響 56 第五章 結論 58 第六章 引用文獻和圖表來源 59

    [1] A. de Vries, "The growing energy footprint of artificial intelligence," Joule, vol. 7, no. 10, pp. 2191-2194, Oct 18 2023, doi: 10.1016/j.joule.2023.09.004.
    [2] M. A. Hofman, "Evolution of the human brain: when bigger is better," Front Neuroanat, vol. 8, Mar 27 2014, doi: 10.3389/fnana.2014.00015.
    [3] S. Li et al., "Magnetic skyrmions for unconventional computing," Materials Horizons, 10.1039/D0MH01603A vol. 8, no. 3, pp. 854-868, 2021, doi: 10.1039/D0MH01603A.
    [4] S. Furber, "Large-scale neuromorphic computing systems," J Neural Eng, vol. 13, no. 5, Oct 2016, doi: 10.1088/1741-2560/13/5/051001.
    [5] D. Markovic, A. Mizrahi, D. Querlioz, and J. Grollier, "Physics for neuromorphic computing," Nat Rev Phys, vol. 2, no. 9, pp. 499-510, Sep 2020, doi: 10.1038/s42254-020-0208-2.
    [6] V. Pawlak, J. R. Wickens, A. Kirkwood, and J. N. Kerr, "Timing is not Everything: Neuromodulation Opens the STDP Gate," Frontiers in Synaptic Neuroscience, Review vol. 2, 2010-October-25 2010, doi: 10.3389/fnsyn.2010.00146.
    [7] G. Q. Bi and M. M. Poo, "Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type," J Neurosci, vol. 18, no. 24, pp. 10464-10472, Dec 15 1998, doi: 10.1523/jneurosci.18-24-10464.1998.
    [8] Y. Z. Zhang, P. Huang, B. Gao, J. F. Kang, and H. Q. Wu, "Oxide-based filamentary RRAM for deep learning," J Phys D Appl Phys, vol. 54, no. 8, Feb 25 2021, doi: 10.1088/1361-6463/abc5e7.
    [9] A. Sawa, "Resistive switching in transition metal oxides," Mater Today, vol. 11, no. 6, pp. 28-36, Jun 2008, doi: 10.1016/S1369-7021(08)70119-6.
    [10] H. Kang et al., "Two- and three-terminal HfO-based multilevel resistive memories for neuromorphic analog synaptic elements," Neuromorph Comput En, vol. 1, no. 2, Dec 2021, doi: 10.1088/2634-4386/ac29ca.
    [11] M. Le Gallo and A. Sebastian, "An overview of phase-change memory device physics," J Phys D Appl Phys, vol. 53, no. 21, May 20 2020, doi: 10.1088/1361-6463/ab7794.
    [12] S. G. Sarwat, B. Kersting, T. Moraitis, V. P. Jonnalagadda, and A. Sebastian, "Phase-change memtransistive synapses for mixed-plasticity neural computations," Nat Nanotechnol, vol. 17, no. 5, pp. 507-+, May 2022, doi: 10.1038/s41565-022-01095-3.
    [13] H. Abbas, J. Y. Li, and D. S. Ang, "Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications," Micromachines-Basel, vol. 13, no. 5, May 2022, doi: 10.3390/mi13050725.
    [14] H. L. Ma et al., "Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments," Chinese Phys B, vol. 25, no. 12, Dec 2016, doi: 10.1088/1674-1056/25/12/127303.
    [15] D. Verma, T. C. Chen, B. Liu, and C. S. Lai, "BiOSe-based CBRAM integrated artificial synapse," Heliyon, vol. 9, no. 12, Dec 2023, doi: 10.1016/j.heliyon.2023.e22512.
    [16] Q. F. Ou, B. S. Xiong, L. Yu, J. Wen, L. Wang, and Y. Tong, "In-Memory Logic Operations and Neuromorphic Computing in Non-Volatile Random Access Memory," Materials, vol. 13, no. 16, Aug 2020, doi: 10.3390/ma13163532.
    [17] T. Mikolajick et al., "Next generation ferroelectric materials for semiconductor process integration and their applications," J Appl Phys, vol. 129, no. 10, Mar 14 2021, doi: 10.1063/5.0037617.
    [18] M. Jerry et al., "Ferroelectric FET analog synapse for acceleration of deep neural network training," in 2017 IEEE international electron devices meeting (IEDM), 2017: IEEE, pp. 6.2. 1-6.2. 4.
    [19] J. H. Baek et al., "Artificial synaptic devices based on biomimetic electrochemistry: A review," Mater Res Bull, vol. 176, Aug 2024, doi: 10.1016/j.materresbull.2024.112803.
    [20] X. H. Yao et al., "Protonic solid-state electrochemical synapse for physical neural networks," Nat Commun, vol. 11, no. 1, Jun 19 2020, doi: 10.1038/s41467-020-16866-6.
    [21] S. Y. Cheng et al., "Tuning electromagnetic absorption properties of transition metal oxides by hydrogenation with nascent hydrogen," Chem Eng J, vol. 417, Aug 1 2021, doi: 10.1016/j.cej.2020.127980.
    [22] M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams, "A scalable neuristor built with Mott memristors," Nat Mater, vol. 12, no. 2, pp. 114-117, Feb 2013, doi: 10.1038/Nmat3510.
    [23] L. G. Gao, P. Y. Chen, and S. M. Yu, "NbO based oscillation neuron for neuromorphic computing," Appl Phys Lett, vol. 111, no. 10, Sep 4 2017, doi: 10.1063/1.4991917.
    [24] Q. Duan, Z. Jing, K. Yang, R. Huang, and Y. Yang, "Oscillation neuron based on threshold switching characteristics of niobium oxide films," in 2019 IEEE International Workshop on Future Computing (IWOFC, 2019: IEEE, pp. 1-3.
    [25] A. C. Kozen et al., "In Situ Hydrogen Plasma Exposure for Varying the Stoichiometry of Atomic Layer Deposited Niobium Oxide Films for Use in Neuromorphic Computing Applications," Acs Appl Mater Inter, vol. 12, no. 14, pp. 16639-16647, Apr 8 2020, doi: 10.1021/acsami.0c01279.
    [26] https://www.metrohm.com/zh_tw.html (accessed 2024).
    [27] https://www.bruker.com/zh/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/d8-advance-family/d8-advance-eco.html (accessed 2024).
    [28] https://www.jeol.com/products/scientific/xps_esca/JPS-9030.php (accessed 2024).
    [29] https://ctrmost-cfc.ncku.edu.tw/p/404-1210-7290.php?Lang=zh-tw (accessed 2024).
    [30] B. L. Sopori et al., "Hydrogen in silicon: A discussion of diffusion and passivation mechanisms," Sol Energ Mat Sol C, vol. 41-2, pp. 159-169, Jun 1996, doi: Doi 10.1016/0927-0248(95)00098-4.
    [31] J. L. Benton, C. J. Doherty, S. D. Ferris, D. L. Flamm, L. C. Kimerling, and H. J. Leamy, "Hydrogen Passivation of Point-Defects in Silicon," Appl Phys Lett, vol. 36, no. 8, pp. 670-671, 1980, doi: Doi 10.1063/1.91619.
    [32] X. F. Zhou, Z. C. Li, Y. Q. Wang, X. Sheng, and Z. J. Zhang, "Photoluminescence of amorphous niobium oxide films synthesized by solid-state reaction," Thin Solid Films, vol. 516, no. 12, pp. 4213-4216, Apr 30 2008, doi: 10.1016/j.tsf.2007.12.112.

    無法下載圖示 校內:2029-06-30公開
    校外:2029-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE