| 研究生: |
林嘉慶 Lin, Chia-Ching |
|---|---|
| 論文名稱: |
硫化鉛敏化異質界面太陽能電池之研究 The study of PbS sensitized heterojuction Solar Cells |
| 指導教授: |
陳昭宇
Chen, Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 硫化鉛 、固態電池 、表面修飾 、電洞傳輸材料 、染料 |
| 外文關鍵詞: | Lead sulfide (PbS), Solid state solar cells, Surface modification, Hole transport materials, Dye |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用窄能帶半導體材料硫化鉛取代染料作為光敏化劑,再利用連續離子吸附反應成膜法(Successive ionic layer adsorption reaction, SILAR)將硫化鉛沉積到二氧化鈦薄膜表面,搭配電洞傳輸材料(Spiro-OMeTAD、P3HT)組裝成固態太陽能電池。
紫外光吸收頻譜結果顯示隨著硫化鉛沉積的次數越高,其硫化鉛的顆粒粒徑會變大,吸收會有紅位移的現象,證實了能帶的可調性。
對於搭配Spiro-OMeTAD的元件來說,元件之光電轉換效率為0.065 % (AM1.5, 100 mW/cm2)。以小分子磷酸[(1S)-(+)-(1-Aminohexyl)phosphonic acid, P]與苯硫醇衍生物(4-Methoxybenzenethiol, B)對TiO2/PbS表面修飾,可抑制界面電荷再結合與促進電子住入到二氧化鈦導帶,改善元件的光電壓與光電流。其元件之光電轉換效率分別為0.314 %與0.139 % (AM1.5, 100 mW/cm2)。以硫化鉛染料(D149)共吸附光陽極,可以填補二氧化鈦裸露的地方,改善元件的光電壓與光電流。元件之光電轉換效率為0.391 % (AM1.5, 100 mW / cm2)。
對於搭配P3HT的元件來說,元件之光電轉換效率為0.289 % (AM1.5, 100 mW/cm2)。以Lithium salt與tBP來提升P3HT的載子濃度,其元件光電轉換效率提升為0.442 % (AM1.5, 100 mW/cm2)。以小分子酸(Decylphosphonic acid, DPA)表面修飾光陽極以及染料(Z907)共吸附光陽極,可以改善P3HT孔隙填充問題,其元件光電轉換效率分別為0.3 %與0.413 % (AM1.5, 100 mW/cm2)。
The research use the narrow band semiconductor material lead sulfide (PbS) as light sensitizer to replace the dye molecules. Then, the method of successive ionic layer adsorption reation (SILAR) was used to assemble PbS onto mesoporous TiO2 films. By using the hole transport materials (Spiro-OMeTAD、P3HT) to fabricate Solid-State Quantum Dots sensitized Solar Cells.
UV-visible spectrum analysis showed with the higher number of deposition times of PbS, PbS particle size becomes large, the absorption will have the red-shift phenomenon.As a result we can confirmed the band adjustable.
For components with Spiro-OMeTAD, the components of the photoelectric conversion efficiency is 0.065 % (AM1.5, 100 mW/cm2). Using small molecule phosphoric acid [(1S) - (+) - (1-Aminohexyl) phosphonic acid, P] and benzene thiol derivatives (4-Methoxybenzenethiol, B) TiO2/PbS surface modification, in this way it can inhibit the interfacial charge recombination and the promotion of electronic injecting into the conduction band of TiO2 to improve the component of the photovoltage and photocurrent. Photoelectric conversion efficiency of its components are 0.314 % and 0.139 % (AM1.5, 100 mW/cm2). PbS and dye (D149) coadsorption of photoanode can fill the bare TiO2, and then improve the component of the photovoltage and photocurrent. The components of the photoelectric conversion efficiency is 0.391 % (AM1.5, 100 mW / cm2).
For the components of the P3HT, the component of the photoelectric conversion efficiency is 0.289 % (AM1.5, 100 mW/cm2). To enhance the carrier concentration of P3HT, we added Lithium salt and tBP into P3HT, and its components photoelectric conversion efficiency is 0.442 % (AM1.5, 100 mW/cm2). Using small molecule acid (Decylphosphonic acid, DPA) surface modification of the photoanode and the dye (Z907) adsorption photoanode can improve the P3HT pore-filling of components. The components of photoelectric conversion efficiency are 0.3 % and 0.413 % (AM1.5, 100 mW / cm2).
1. O’Regan, B.; Grätzel, M., Nature 1991, 353, 737.
2. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Science 2011, 334, 629.
3. Wang, M.; Moon, S.-J.; Xu, M.; Chittibabu, K.; Wang, P.; Cevey-Ha, N.-L.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M., Small 2010, 6, 319.
4. (a) Kru1ger, J.; Plass, R.; Grätzel, M.; Cameron, P. J.; Peter, L. M., J. Phys. Chem. B 2003, 107, 7536; (b) Fabregat-Santiago, F.; Bisquert, J.; Cevey, L.; Chen, P.; Wang, M.; Zakeeruddin, S. M.; Grätzel, M., J. Am. Chem. Soc. 2009, 131, 558; (c) Wang, M.; Chen, P.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M., Chem. Phys. Chem. 2009, 10, 290.
5. Yum, J.-H.; Chen, P.; Grätzel, M.; Nazeeruddin, M. K., Chem. Sun. Chem. 2008, 1, 699.
6. (a) Sambur, J. B.; Novet, T.; Parkinson, B. A., Science 2010, 330, 63; (b) Baskoutas, S.; Terzis, A. F., J. Appl. Phys. 2006, 99, 013708.
7. Zhao, Y.; Zou, J.; Shi, W., J. Mater. Sci. Eng. B 2005, 121, 20.
8. (a) Hines, M. A.; D.Scholes, G., Adv. Mater. 2003, 15, 1844; (b) Chang, Q.; Ye, H.; Song, Y., Colloids Surf. A: Physicochem. Eng. Aspects. 2007, 298, 58.
9. Lee, S.-M.; Jun, Y.-W.; Cho, S.-N.; Cheon, J., J. Am. Chem. Soc. 2002, 124, 11244.
10. Chang, J. A.; Im, S. H.; Lee, Y. H.; Kim, H.-J.; Lim, C.-S.; Heo, J. H.; Seok, S. I., Nano Lett. 2012, 12, 1863.
11. (a) Leventis, H. C.; O’Mahony, F.; Akhtar, J.; Afzaal, M.; O’Brien, P.; Haque, S. A., J. Am. Chem. Soc. 2010, 132, 2743; (b) Hossain, M. A.; Jennings, J. R.; Koh, Z. Y.; Wang, Q., ACS Nano 2011, 5, 3172; (c) Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., ACS Nano 2011, 5, 5158.
12. Wang, Y.; Herron, N., J. Phys. Chem. 1991, 95, 525.
13. Rossetti, R.; Ellison, J. L.; Gibson, J. M., J. Chem. Phys. 1983, 80, 4464.
14. (a) Landsberg, P. T.; Nussbaumer, H.; Willeke, G., J. Appl. Phys. 1993, 74, 1451; (b) Kolodinski, S.; Werner, J. H.; Wittchen, T.; Queisser, H., J. Appl. Phys. Lett. 1993, 63, 2405.
15. Chalita, R.; Chunrong, X.; Kenneth, J.; Balkus, J., ACS Nano 2008, 2, 1682.
16. Nozik, A. J., Physica E 2002, 14, 115.
17. (a) Shen, Y.-J.; Lee, Y.-L., Nanotechnology 2008, 19, 045602; (b) Mora-Seró, I. a.; Giménez, S.; Moehl, T.; Fabregat-Santiago, F.; Lana-Villareal, T.; Gómez, R.; Bisquert, J., Nanotechnology 2008, 19, 424007.
18. Lee, H.; Leventis, H. C.; Moon, S.-J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K., Adv. Funct. Mater. 2009, 19, 2735.
19. Barkhouse, D. A. R.; Debnath, R.; Kramer, I. J.; Zhitomirsky, D.; Pattantyus-Abraham, A. G.; Levina, L.; Etgar, L.; Grätzel, M.; Sargent, E. H., Adv. Mater. 2011, 23, 3134.
20. (a) Hyun, B.-R.; Zhong, Y.-W.; Bartnik, A. C.; Sun, L.; a, H. D. A.; Wise, F. W.; Goodreau, J. D.; Matthews, J. R.; Leslie, T. M.; Borrelli, N. F., ACS Nano 2008, 2, 2206; (b) Ratanatawanate, C.; Tao, Y.; Balkus, K. J.; Jr, J. Phys. Chem. C 2009, 113, 10755.
21. Gorer, S.; Hodes, G., Studies in Surface Science and catalysis 1996, 103, 297.
22. Hodes, G., Israel Journal of Chemistry 1993, 35, 95.
23. Giménez, S.; Mora-Seró, I. a.; Macor, L.; Guijarro, N.; Lana-Villarreal, T.; Gómez, R.; Diguna, L. J.; Shen, Q.; Toyoda, T.; Bisquert, J., Nanotechnology 2009, 20, 295204.
24. Patel, A. A.; Wu, F.; Zhang, J. Z.; Torres-Martinez, C. L.; Mehra, R. K.; Yang, Y.; Risbud, S. H., J. Phys. Chem. B 2000, 104, 11598.
25. Huang, W.; Shi, J., J. Mater. Res. 2000, 15, 2343.
26. Mo, M.-S.; Shao, M.-W.; Hu, H.-M.; Yang, L.; Yu, W.-C.; Qian, Y.-T., J. Cryst. Growth. 2002, 244, 364.
27. Zhao, X.; Yu, J.; Cheng, B.; Zhang, Q., J. Colloids Surf. A:Physicochem. Eng. Aspects. 2005, 268, 78.
28. Dhas, N. A.; Zaban, A.; Gedanken, A., J. Chem. Mater. 1999, 11, 806.
29. Ding, T.; Zhang, J.-R.; Long, S.; Zhu, J.-J., J. Microelectron. Eng. 2003, 66, 46.
30. Zhang, B.; Li, G.; Zhang, J.; Zhang, Y.; Zhang, L., Nanotechnology 2003, 14, 443.
31. Changqi, X.; Zhicheng, Z.; Hailong, W.; Qiang, Y., J. Mater. Sci. Eng. B 2003, 104, 5.
32. (a) Jing, S.; Xing, S.; Wang, Y.; Hu, H.; Zhao, B.; Zhao, C., Mater. Lett. 2008, 62, 3332; (b) Wu, M.; Zhong, H.; Jiao, Z.; Li, Z.; Sun, Y., Colloids Surf. A: Physicochem. Eng. Aspects 2008, 313-314, 35.
33. Dobson, K. D.; Hodes, G.; Mastai, Y., Sol. Energy Mater. Sol. Cells 2003, 80, 283.
34. Plass, R.; Pelet, S.; Krueger, J.; Grätzel, M.; Bach, U., J. Phys. Chem. B 2002, 106, 7578.
35. (a) Sapp, S. A.; Elliott, C. M.; Contado, C.; Caramori, S.; Bignozzi, C. A., J. Am. Chem. Soc. 2002, 124, 11215; (b) Cazzanti, S.; Caramori, S.; Argazzi, R.; Elliott, C. M.; Bignozzi, C. A., J. Am. Chem. Soc. 2006, 128, 9996; (c) Yu, P.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J., J. Phys. Chem. B 2006, 110, 25451.
36. Tian, Y.; Tatsuma, T., J. Am. Chem. Soc. 2005, 127, 7632.
37. (a) Nakanish, T.; Ohtani, B.; Uosakin, K., J. Electroanal. Chem. 1998, 455, 229; (b) Sheeney-Haj-Ichia, L.; Pogorelova, S.; Gofer, Y.; Willner, I., Adv. Funct. Mater. 2004, 14, 416.
38. (a) Vogel, R.; Hoyer, P.; Weller, H., J. Phys. Chem. 1994, 98, 3183; (b) Licht, S., Sol. Energy Mater. Sol. Cells 1995, 38, 305.
39. Tachan, Z.; Shalom, M.; Hod, I.; Ruhle, S.; Tirosh, S.; Zaban, A., J. Phys. Chem. C 2011, 115, 6162.
40. MCDONALD, S. A.; KONSTANTATOS, G.; ZHANG, S.; CYR, P. W.; KLEM, E. J. D.; LEVINA, L.; SARGENT, E. H., Nat. Mater. 2005, 4, 138.
41. Johnston, K. W.; Pattantyus-Abraham, A. G.; Clifford, J. P.; Myrskog, S. H.; MacNeil, D. D.; Levina, L.; Sargent, E. H., Appl. Phys. Lett. 2008, 92, 151115.
42. Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Grätzel, M.; Sargent, E. H., ACS Nano 2010, 4, 6.
43. Sun, B.; Findikoglu, A. T.; Sykora, M.; Werder, D. J.; Klimov, V. I., Nano Lett. 2009, 9, 1235.
44. Ito, S.; Nazeeruddin, M. K.; Zakeeruddin, S.; Péchy, P.; Comte, P.; Grätzel, M.; Mizuno, T.; Tanaka, A.; Koyanagi, T., International Journal of Photoenergy 2009, 2009, 1.
45. Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Grätzel, M., J. Phys. Chem. B 2003, 107, 8981.
46. (a) Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; Wang, P., J. Phys. Chem. C 2009, 113, 6290; (b) Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C., Angew. Chem. Int. Ed. 2006, 45, 5822.
47. Bessho, T.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau, E. W.-G.; Grätzel, M., Angew. Chem. Int. Ed. 2010, 49, 6646.
48. Grätzel, M., ACCOUNTS OF CHEMICAL RESEARCH 2009, 42, 1788.
49. Teng, C.; Yang, X.; Yuan, C.; Li, C.; Chen, R.; Tian, H.; Li, S.; Hagfeldt, A.; Sun, L., Organic Letters 2009, 11, 5542.
50. Mohmeyer, N.; Kuang, D.; Wang, P.; Schmidt, H.-W.; Zakeeruddin, S. M.; Grätzel, M., J. Mater. Chem. 2006, 16, 2978.
51. Daeneke, T.; Kwon, T.-H.; Holmes, A. B.; Duffy, N. W.; Bach, U.; Spiccia, L., Nature Chemistry 2010, 10, 1038.
52. (a) O’Regan, B.; Schwartz, D. T.; Zakeeruddin, S. M.; Grätzel, M., Adv. Mater. 2000, 12, 1263; (b) O’Regan, B.; Schwartz, D. T., J. Appl. Phys. 1996, 80, 4749.
53. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; F.Weissörtel; Salbeck, J.; Spreitzer, H.; Grätzel, M., Nature 1998, 395, 583.
54. Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Grätzel, M., Chem. Commun. 2002, 2972.
55. Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.-L. e.; Yi, C.; Nazeeruddin, M. K.; Grätzel, M., J. Am. Chem. Soc. 2011, 133, 18042.
56. Pai, D. M.; Yanus, J. F.; Stolka, M., J. Phys. Chem. 1984, 88, 4707.
57. Salbeck, J.; Yu, N.; Bauer, J.; Weissortel, F.; Bestgen, H., Synthetic Metals 1997, 91, 209.
58. Moulé, A. J.; Meerholz, K., Adv. Mater. 2008, 20, 240.
59. Yang, L.; Cappel, U. B.; Unger, E. L.; Karlsson, M.; Karlsson, K. M.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. J., Phys. Chem. Chem. Phys. 2012, 14, 779.
60. Lee, H.; Wang, M.; Chen, P.; Gamelin, D. R.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K., Nano Lett. 2009, 9, 4221.
61. Im, S. H.; Kim, H.-j.; Kim, S. W.; Kim, S.-W.; Seok, S. I., Energy Environ. Sci. 2011, 4, 4181.
62. Moon, S.-J.; Itzhaik, Y.; Yum, J. H.; Zakeeruddin, S. M.; Hodes, G.; Grätzel, M., J. Phys. Chem. Lett. 2010, 1, 1524.
63. Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L., Adv. Mater. 2010, 22, E135.
64. Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Paul Liska; Péchy, P.; Grätzel, M., Res. Appl. 2007, 15, 603.
65. KAVAN, L.; Grätzel, M., Electrochimica Acta 1995, 40, 643.
66. Tian, H.; Liu, L.; Liu, B.; Yuan, S.; Wang, X.; YingWang; Yu, T.; Zou, Z., J. Phys. D:Appl. Phys. 2009, 42, 045109.
67. (a) Krüger, J.; Bach, U.; Grätzel, M., Adv. Mater. 2000, 12, 447; (b) Shalom, M.; Rühle, S.; Hod, I.; Yahav, S.; Zaban, A., J. Am. Chem. Soc. 2009, 131, 9876.
68. Chen, P., Optical and Electronic Properties of Dye-Sensitized Heterojunction Solar Cells. 2009.
69. Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M., Adv. Mater. 2006, 18, 1202.
70. Liu, X.; Zhang, W.; Uchida, S.; Cai, L.; Liu, B.; Ramakrishna, S., Adv. Mater. 2010, 22, E1.