簡易檢索 / 詳目顯示

研究生: 郭賢立
Kuo, Hsien-Li
論文名稱: 地動訊號分析運用於大規模崩塌發生之降雨條件研究
A study of landslide-triggering rainfall conditions by analyzing the ground motion signals induced by large-scale landslides
指導教授: 林冠瑋
Lin, Guan-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 139
中文關鍵詞: 大規模崩塌寬頻地震網地動訊號促崩雨量
外文關鍵詞: large-scale landslide, seismic signal, rainfall threshold
相關次數: 點閱:99下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  2009年莫拉克颱風後,降雨觸發的大規模邊坡災害成為防災工作的新挑戰,但是礙於過去的觀測紀錄不足,及大規模崩塌確切的發生時間難以獲得,所以難以進行降雨條件的分析。藉由寬頻地震站所記錄到由大規模崩塌引發的地表振動訊號,可以從中擷取出崩塌發生時間及運動歷時等基本資訊,將可應用於雨量資料收集與促崩降雨條件分析。本研究針對2005年至2014年間的19個颱風、豪雨事件,收集期間台灣寬頻地震網(BATS)之地動訊號,在排除區域地震與遠震後,經由人工判釋的方式搜尋大規模崩塌的地動訊號特徵圖形,從中已經成功篩選出68個由崩塌作用所產生之地動訊號。藉由地動訊號對應崩塌發生的時間資訊,並配合各項降雨資料,來進行大規模崩塌發生之降雨條件分析。結果顯示大規模崩塌多數發生於累積降雨量大於1,000 mm、降雨延時20小時以上、降雨強度大於8.5 mm/hr、土壤雨量指數大於200 mm的降雨條件之下,綜合各項降雨條件將可做為制定大規模崩塌警戒模式之基礎。

    The study collected the seismic records of the Broadband Array in Taiwan for Seismology (BATS) to identify the ground motions triggered by the landslides occuring during 2005-2014. After eliminating the signals from local and teleseismic earthquakes, 68 landslide-triggered seismic signals were interpreted. The landslide-triggered seismic signals provided the accurate moments of landslide initiation to assess the rainfall conditions for large-scale landslides. The results about critical rainfall for large-scale landslides includes (1) huge amount of cumulative rainfall is the major factor to trigger large scale landslide, (2) the I-D rainfall threshold for large-scale landslide is I =20.3‧D-0.33 , which is significantly higher than that for shallow landslides, and (3) the amount of effective cumulative rainfall for 70% occurrence probability for large-scale landslides should be 875 mm, and for 90% should be 1100 mm.

    摘要 II ABSTRACT III 表目錄 XI 圖目錄 XII 第 1 章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究年度 4 1.4 論文架構 5 第 2 章 文獻回顧 7 2.1 山崩判釋及統計分析 7 2.1.1 山崩影像判釋 7 2.2 山崩與地形演育的關聯性研究 8 2.3 大規模崩塌地動訊號研究 9 2.4 雨量分析 13 第 3 章 研究區域 17 3.1 地質條件 18 3.1.1 岩性 18 3.1.2 地質構造 18 3.1.3 地形 19 3.2 雨量 19 3.2.1 年平均雨量 19 3.2.2 颱風次數及最大累積雨量統計 22 第 4 章 研究方法 26 4.1 大規模崩塌判釋 26 4.2 地震訊號判釋方法 28 4.2.1 訊號來源 28 4.2.2 處理方法 29 4.3 雨量門檻分析 37 4.3.1 雨量統計方法 38 4.3.2 土壤雨量指數 41 4.4 崩塌警戒模式 43 第 5 章 研究成果 46 5.1 大規模崩塌影像判釋成果 46 5.1.1 崩塌統計結果 50 5.1.2 崩塌的面積機率分布 51 5.1.3 崩塌地的地形分析結果 52 5.2 崩塌的地動訊號判釋結果 59 5.2.1 判釋結果與定位 59 5.2.2 地動訊號的包絡線面積及最大速度振幅 66 第 6 章 大規模崩塌地動訊號判釋成果討論 78 6.1 崩塌地動訊號與塊體運動機制關係 78 6.2 崩塌訊號水平方向軌跡 80 6.3 崩塌訊號的傳遞距離 81 6.4 利用地動訊號預測崩塌規模 85 6.5 地動訊號判釋方法討論 89 第 7 章 雨量門檻值分析 90 7.1 單因子雨量分析 90 7.1.1 一般單因子分析 96 7.1.2 土壤雨量指數 102 7.2 雙雨量因子分析 108 7.2.1 降雨強度I與降雨延時D之關係 108 7.2.2 累積雨量R與降雨延時D的關係 111 7.2.3 降雨強度I與累積降雨量R的關係 115 7.3 降雨因子分析綜合討論 119 7.3.1 崩塌降雨警戒模式 119 7.3.2 極端事件對降雨門檻值的影響 123 7.3.3 岩性與崩塌降雨條件之關係 125 7.3.4 地理條件與崩塌降雨條件之關係 126 第 8 章 結論 128 參考文獻 130

    中文部分
    中央氣象局 (2005) 氣候資料年報-第一部分-地面資料,交通部中央氣象局出版,共184頁。
    中央氣象局 (2006) 氣候資料年報-第一部分-地面資料,交通部中央氣象局出版,共185頁。
    中央氣象局 (2007) 氣候資料年報-第一部分-地面資料,交通部中央氣象局出版,共185頁。
    中央氣象局 (2008) 氣候資料年報-第一部分-地面資料,交通部中央氣象局出版,共185頁。
    中央氣象局 (2009) 氣候資料年報-第一部分-地面資料,交通部中央氣象局出版,共186頁。
    中央氣象局 (2010) 氣候資料年報-第一部分-地面資料,交通部中央氣象局出版,共202頁。
    中央氣象局 (2011) 氣候資料年報-第一部分-地面資料,交通部中央氣象局出版,共215頁。
    中央氣象局 (2012) 氣候資料年報-第一部分-地面資料,交通部中央氣象局出版,共183頁。
    中央氣象局 (2013) 氣候資料年報-第一部分-地面資料,交通部中央氣象局出版,共178頁。
    中央氣象局 (2014) 氣候資料年報-第一部分-地面資料,交通部中央氣象局出版,共182頁。
    王虹萍、黃彥豪、葉美伶、方耀民、李秉乾、周天穎、尹孝元 (2009). 莫拉克風災臺灣土石流觀測實錄,中華水土保持學報,40卷,第4期,311-328。
    何春蓀 (1986) 台灣地質概論-台灣地質圖說明書,經濟部中央地質調查所,共,163頁。
    吳明峰,劉哲欣,范正成 (2002) 南投地區土石流發生臨界降雨線之設定及其於集集大地震後之修正,中華水土保持學報,33卷,第1期,31-38。
    吳積善,康志成,田達權 (1990) 雲南蔣家溝泥石流觀測研究,北京,科學出版社(中國),156-164。
    李明熹 (2007) 土石流發生降雨警戒分析及其應用. 成功大學水利及海洋工程學系學位論文,共229頁
    李錫堤,董家鈞,林銘郎 (2009) 小林村災變之地質背景探討,地工技術,第122期,89-96。
    李錫堤,潘國樑,林銘郎 (2005) 山崩調查與危險度評估-山崩潛感分析之研究(3/3),經濟部中央地質調查所報告第94-18號,共268頁。
    林啟文,張徽正,盧詩丁,石同生,黃文正 (2000) 台灣活動斷層概論-五十萬分之一臺灣活動斷層分布圖說明書,第二版,經濟部中央地質調查所特刊十三號, 共122頁。
    范正成,吳明峰,彭光宗 (1999) 豐丘土石流發生臨界降雨線之研究,地工技術, 第74期,39-46。
    高弘,吳建文,陳榮裕 (2001) 使用類神經網路自動判別寬頻地震資料之波相到時,中央氣象局地震技術報告,第30卷,103-120。
    陳樹群,陳冠翰,吳俊鋐 (2014) 地下水引發自由端順向坡土體滑動特性分析,中華水土保持學報,第45卷,第2期,110-118。
    陳樹群,蔡喬文,陳振宇,陳美珍 (2013) 筒狀模式之土壤雨量指數應用於土石流防災警戒,第44期,第2期,131-143。
    經濟部水利署 (2005) 台灣水文年報-第一部份-雨量,經濟部水利署,共299頁。
    經濟部水利署 (2006) 台灣水文年報-第一部份-雨量,經濟部水利署,共292頁。
    經濟部水利署 (2007) 台灣水文年報-第一部份-雨量,經濟部水利署,共286頁。
    經濟部水利署 (2008) 台灣水文年報-第一部份-雨量,經濟部水利署,共295頁。
    經濟部水利署 (2009) 台灣水文年報-第一部份-雨量,經濟部水利署,共300頁。
    經濟部水利署 (2010) 台灣水文年報-第一部份-雨量,經濟部水利署,共303頁。
    經濟部水利署 (2011) 台灣水文年報-第一部份-雨量,經濟部水利署,共312頁。
    經濟部水利署 (2012) 台灣水文年報-第一部份-雨量,經濟部水利署,共306頁。
    經濟部水利署 (2013) 台灣水文年報-第一部份-雨量,經濟部水利署,共303頁。
    經濟部水利署 (2014) 台灣水文年報-第一部份-雨量,經濟部水利署,共317頁。
    詹錢登,李明熹,陳晉琪 (2002)「山坡地緊急災害處理計畫-土石流設計流量之可靠度分析探討」,九十一年度農委會農業發展基金-山坡地災害緊急處理計劃之各項補助研究計劃期末發表會,第251-273頁。
    詹錢登 (2004). 土石流發生降雨警界模式,中華水土保持學報,第35卷,第3期,275-285。
    趙维城 (1998) 論雲南地貌體系,雲南地理還境研究,第10卷,A12期,47-55。
    劉哲欣,吳亭燁,陳聯光,林聖琪,林又青,陳樹群,周憲德 (2011) 臺灣地區重大岩體滑動案例之土方量分析,中華水土保持學報,第42期,第2卷,150-159。
    謝正倫 (2001) 桃芝颱風土石流災害發生基準初步研究,土石流災害及其防制對策研討會論文集,83-102。
    譚萬沛,(1991) 降雨泥石流的臨界雨量研究,第二屆全國泥石流學術會議論文集, 136-142。


    英文部分
    Agliardi, F., Crosta, G. B., Zanchi, A., and Ravazzi, C. (2009). Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy. Geomorphology, Vol. 103,pp. 113-129.
    Arattano, M., and Marchi, L. (2000). Video-derived velocity disribution along a debris flow surge. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, Vol. 25, pp. 781-784.
    Barlow, J., Franklin, S., and Martin, Y. (2006). High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes. Photogrammetric Engineering & Remote Sensing, Vol. 72, pp. 687-692.
    Blackwelder, E. (1933). The insolation hyphothesis of rock weathering. American Journal of Science, Vol. 152, pp. 97-113.
    Burtin, A., Bollinger, L., Cattin, R., Vergne, J., and Nábělek, J. (2009). Spatiotemporal sequence of Himalayan debris flow from analysis of high‐frequency seismic noise. Journal of Geophysical Research: Earth Surface, Vol. 114, pp. 687-692.
    Caine, N. (1980). The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Annaler. Series A. Physical Geography, Vol. 62, pp. 23-27.
    Cannon, S. H., and Ellen, S. (1985). Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. California geology, Vol. 38, pp. 267-272.
    Cannon, S. H., and Ellen, S. D. (1985). Rainfall that resulted in abundant debris-flow activity during the storm. U.S. Geol. Surv. Prof. Pap., Vol. 1434, pp. 27-33.
    Chao, W. A., Zhao, L., Chen, S. C., Wu, Y. M., Chen, C. H., and Huang, H. H. (2016). Seismology-based early identification of dam-formation landquake events. Scientific reports, Vol. 6:19259, pp. 7.
    Chen, C. W., Saito, H., and Oguchi, T. (2015). Rainfall intensity–duration conditions for mass movements in Taiwan. Progress in Earth and Planetary Science, Vol 2, pp. 1-13.
    Chen, Y. C., Chang, K. t., Chiu, Y. J., Lau, S. M., and Lee, H. Y. (2013). Quantifying rainfall controls on catchment‐scale landslide erosion in Taiwan. Earth Surface Processes and Landforms, Vol. 38, pp. 372-382.
    Chien, F. C., amd Kuo, H. C. (2011). On the extreme rainfall of Typhoon Morakot (2009). Journal of Geophysical Research: Atmospheres, Vol. 116, D5104, pp. 22.
    Chigira, M., Duan, F., Yagi, H., and Furuya, T. (2004). Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics. Landslides, Vol. 1, pp. 203-209.
    Chigira, M., and Kiho, K. (1994). Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan. Engineering Geology, Vol.38, pp. 221-230.
    Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., and Milliman, J. (2004). Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, Vol. 32, pp. 733-736.
    Dahal, R. K., and Hasegawa, S. (2008). Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, Vol. 100, pp. 429-443.
    Dahlen, F. A. (1993). Single-Force Representation Of Shallow Landslide Sources. Bulletin of the Seismological Society of America, Vol. 83, No. 1, pp. 14.
    Dammeier, F., Moore, J. R., Haslinger, F., and Loew, S. (2011). Characterization of alpine rockslides using statistical analysis of seismic signals. Journal of Geophysical Research: Earth Surface, Vol. 116, F04024, pp. 19.
    Deparis, J., Jongmans, D., Cotton, F., Baillet, L., Thouvenot, F., and Hantz, D. (2008). Analysis of Rock-Fall and Rock-Fall Avalanche Seismograms in the French Alps. Bulletin of the Seismological Society of America, Vol. 98, pp. 1781-1796.
    Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J.H., Yeh, E.C., and Sone, H. (2010). Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics and Mining Sciences, Vol. 47, pp. 1141-1157.
    Dramis, F., and Sorriso Valvo, M. (1994). Deep-seated gravitational slope deformations, related landslides and tectonics. Engineering Geology, Vol 38, pp. 231-243.
    Ekström, G., and Stark, C. P. (2013). Simple scaling of catastrophic landslide dynamics. Science, Vol 339, pp. 1416-1419.
    Favreau, P., Mangeney, A., Lucas, A., Crosta, G., and Bouchut, F. (2010). Numerical modeling of landquakes. Geophysical Research Letters, Vol. 37, L15305, pp 1-5.
    Feng, Z. (2011). The seismic signatures of the 2009 Shiaolin landslide in Taiwan. Natural Hazards and Earth System Science, Vol. 11, pp. 1559-1569.
    Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., and Massonet, D. (2007). InSAR Principles-Guidelines for SAR Interferometry Processing and Interpretation Vol. 19, pp. 48.
    Guzzetti, F., Manunta, M., Ardizzone, F., Pepe, A., Cardinali, M., Zeni, G., and Lanari, R. (2009). Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, Central Italy. Pure and Applied Geophysics, Vol.166, pp. 1425-1459.
    Helmstetter, A., and Garambois, S. (2010). Seismic monitoring of Séchilienne rockslide (French Alps): Analysis of seismic signals and their correlation with rainfalls. Journal of Geophysical Research: Earth Surface, Vol. 115, F03016, pp. 1-15.
    Hibert, C., Mangeney, A., Grandjean, G., and Shapiro, N. (2011). Slope instabilities in Dolomieu crater, Réunion Island: From seismic signals to rockfall characteristics. Journal of Geophysical Research: Earth Surface, Vol. 116, F04032, pp. 1-18.
    Hovius, N., Stark, C. P., and Allen, P. A. (1997). Sediment flux from a mountain belt derived by landslide mapping. Geology, Vol. 25, pp. 231-234.
    Hovius, N., Stark, C. P., Hao‐Tsu, C., and Jiun‐Chuan, L. (2000). Supply and removal of sediment in a landslide‐dominated mountain belt: Central Range, Taiwan. The Journal of Geology, Vol. 108, pp. 73-89.
    Hung, C. W., and Kao, P. k. (2010). Weakening of the winter monsoon and abrupt increase of winter rainfalls over northern Taiwan and southern China in the early 1980s. Journal of Climate, Vol. 23, pp. 2357-2367.
    Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., and Casagli, N. (2012). Design and implementation of a landslide early warning system. Engineering Geology, Vol. 147, pp. 124-136.
    Ishihara, Y., and Kobatake, S. (1979). Runoff model for flood forecasting. Bulletin of the Disaster Prevention Research Institute, Vol. 29, No. 1, pp. 27-43.
    Jan, C. D., and Chen, C. L. (2005). Debris flows caused by Typhoon Herb in Taiwan Debris-Flow Hazards and Related Phenomena. Springer Berlin Heidelberg, pp.539-563.
    Kanamori, H., and Given, J. W. (1982). Use of long-period surface waves for rapid determination of earthquake source parameters 2. Preliminary determination of source mechanisms of large earthquakes (MS⩾ 6.5) in 1980. Physics of the Earth and Planetary Interiors, Vol. 30, pp. 260-268.
    Kanamori, H., Given, J. W., and Lay, T. (1984). Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980. Journal of Geophysical Research: Solid Earth, Vol. 89, pp. 1856-1866.
    Kao, H., Kan, C. W., Chen, R. Y., Chang, C. H., Rosenberger, A., Shin, T. C., and Liang, W. T. (2012). Locating, monitoring, and characterizing typhoon-linduced landslides with real-time seismic signals. Landslides, Vol 9, pp. 557-563.
    Kawakatsu, H. (1989). Centroid single force inversion of seismic waves generated by landslides. Journal of Geophysical Research: Solid Earth, 94(B9), 12363-12374.
    Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, W. M., Ellen, S. D., and Zatkin, R. S. (1987). Real-time landslide warning during heavy rainfall. Science, Vol.238, pp. 921-925.
    Korup, O. (2005). Large landslides and their effect on sediment flux in South Westland, New Zealand. Earth Surface Processes and Landforms, Vol. 30, pp. 305-323.
    Korup, O., Clague, J. J., Hermanns, R. L., Hewitt, K., Strom, A. L., & Weidinger, J. T. (2007). Giant landslides, topography, and erosion. Earth and Planetary Science Letters, Vol. 261, pp. 578-589.
    Kuo, C. Y., Chang, K. J., Tsai, P. W., Wei, S. K., Chen, R. F., Dong, J. J., and Tai, Y. C. (2015). Identification of co-seismic ground motion due to fracturing and impact of the Tsaoling landslide, Taiwan. Engineering Geology, Vol. 196, pp. 268-279.
    Latchman, J., Lynch, L., and Voight, B. (1998). Seismicity associated with dome growth and collapse at the Soufriere Hills Volcano, Montserrat AD Miller, 1 RC Stewart, 2 RA White, 3 R. Luckett, 1 BJ Baptie, 1 WP Aspinall, 4. Geophysical Research Letters, Vol. 25, pp. 3401-3404.
    Lin, C., Jan, J., Pu, H., Tu, Y., Chen, C., and Wu, Y. (2015). Landslide seismic magnitude. Earth and Planetary Science Letters, Vol. 429, pp. 122-127.
    Lin, C., Kumagai, H., Ando, M., and Shin, T. (2010). Detection of landslides and submarine slumps using broadband seismic networks. Geophysical Research Letters, Vol. 37, L22309, pp. 1-5.
    Marcelino, E. V., Formaggio, A. R., and Maeda, E. E. (2009). Landslide inventory using image fusion techniques in Brazil. International Journal of Applied Earth Observation and Geoinformation, Vol. 11, pp. 181-191.
    McKean, J., and Roering, J. (2004). Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, Vol. 57, pp. 331-351.
    Moretti, L., Mangeney, A., Capdeville, Y., Stutzmann, E., Huggel, C., Schneider, D., and Bouchut, F. (2012). Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophysical Research Letters, Vol. 39, L16402, pp. 1-7.
    Othman, A. A., and Gloaguen, R. (2013). River courses affected by landslides and implications for hazard assessment: A high resolution remote sensing case study in NE Iraq–W Iran. Remote Sensing, Vol 5, pp. 1024-1044.
    Pankow, K. L., Moore, J. R., Hale, J. M., Koper, K. D., Kubacki, T., Whidden, K. M., and McCarter, M. K. (2014). Massive landslide at Utah copper mine generates wealth of geophysical data. GSA Today, Vol 24, pp. 4-9.
    Saito, H., Nakayama, D., and Matsuyama, H. (2010). Relationship between the initiation of a shallow landslide and rainfall intensity—duration thresholds in Japan. Geomorphology, Vol.118, pp. 167-175.
    Soeters, R., amd van Westen, C. J. (1996). Slope instability recognition, analysis and zonation. Landslides, investigation and mitigation. Transportation Research Board, National Research Council, Special Report, Vol 247, pp. 129-177.
    Stini, J. (1941). Unsere Täler wachsen zu. Geologie und Bauwesen, Vol.13, pp. 71-79.
    Stockwell, R. G., Mansinha, L., and Lowe, R. (1996). Localization of the complex spectrum: the S transform. Signal Processing, IEEE Transactions on, Vol 44, pp. 998-1001.
    Suriñach, E., Vilajosana, I., Khazaradze, G., Biescas, B., Furdada, G., and Vilaplana, J. (2005). Seismic detection and characterization of landslides and other mass movements. Natural Hazards and Earth System Science, Vol. 5, pp. 791-798.
    Suwa, H., Mizuno, T., and Ishii, T. (2010). Prediction of a landslide and analysis of slide motion with reference to the 2004 Ohto slide in Nara, Japan. Geomorphology, Vol. 124, pp. 157-163.
    Tsou, C. Y., Feng, Z. Y., and Chigira, M. (2011). Catastrophic landslide induced by typhoon Morakot, Shiaolin, Taiwan. Geomorphology, Vol. 127, pp. 166-178.
    Wech, A. G., and Creager, K. C. (2008). Automated detection and location of Cascadia tremor. Geophysical Research Letters, Vol. 35, L20302, pp.1-5.
    Wieczorek, G. F. (1987). Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. Reviews in Engineering Geology, Vol. 7, pp. 93-104.
    Wu, C. H., Chen, S. C., and Chou, H. T. (2011). Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan. Engineering Geology, Vol. 123, pp. 13-21.
    Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., and Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth, Vol. 112, B08312, pp. 1-14
    Yamada, M., Kumagai, H., Matsushi, Y., & Matsuzawa, T. (2013). Dynamic landslide processes revealed by broadband seismic records. Geophysical Research Letters, Vol. 40, pp. 2998-3002.
    Yamada, M., Matsushi, Y., Chigira, M., & Mori, J. (2012). Seismic recordings of landslides caused by Typhoon Talas (2011), Japan. Geophysical Research Letters, Vol. 39. L13301, pp. 1-5.

    日文部分
    网干寿夫 (1972) 集中豪雨のつサ土斜面の崩坏,施工技术,Vol. 5-11, pp. 45。
    岡田憲治 (2002) 土壌雨量指数,測候時報,Vol. 69,pp. 67-100。
    青木佑久 (1980) 土石流等の災害をもたらす" 危険雨量",防災科学技術,Vol.38, 22-26。
    菅原正巳 (1972) 流出解析法,共立出版,pp.253。

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE