簡易檢索 / 詳目顯示

研究生: 黃祥瑋
Huang, Hsiang-Wei
論文名稱: n通道和p通道氮化鋁鎵/氮化鎵異質接面場效應電晶體之研製
Development of n-channel and p-channel AlGaN/GaN Heterostructure Field Effect Transistors
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 112
中文關鍵詞: 氮化鋁鎵/氮化鎵異質接面場效應電晶體n通道元件p通道元件蝕刻時間表面處理
外文關鍵詞: AlGaN/GaN, heterostructure field-effect transistors (HFETs), n-channel devices, p-channel devices, etching time, surface treatment
相關次數: 點閱:148下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在互補邏輯電路中,為了要降低靜態功率消耗,n通道和p通道元件必須操作在常關模式,因此本論文旨在開發常關型n通道以及p通道的氮化鋁鎵/氮化鎵異質接面場效應電晶體,並針對兩種磊晶結構進行比較,使其可以應用在互補式金屬氧化物半導體架構中。藉由適當調整蝕刻時間,成功將n通道和p通道元件的操作模式轉變成增強型。
    在p通道元件製備流程中,為了降低蝕刻後造成的損傷,我們以稀釋的四甲基氫氧化銨溶液進行表面處理並利用長時間的氮氣退火使其介面缺陷得以改善。此外,在源/汲極金屬沉積前,透過稀釋的鹽酸溶液進行表面處理,確保金屬與半導體界面的氧化物可以更有效的去除,使其歐姆接觸特性得到相當好的改善。
    增強型n通道元件的性能如下:在閘極電壓為 1 V 時,最大汲極電流密度達到 39.6 mA/mm,最大跨導值達到 27.89 mS/mm,臨界電壓為 0.19 V,次臨界擺幅與電流開關比為 282.75 mV/dec 與4.8 × 104,閘極漏電流為1.32 × 10-3 mA/mm;增強型p通道元件的性能如下:在閘極電壓為 -2 V 時,最大汲極電流密度達到 -0.17 mA/mm,最大跨導值達到 1.1 mS/mm,臨界電壓為 -2.84 V,次臨界擺幅與電流開關比為 103.1 mV/dec 與5.66 × 105,閘極漏電流為3.17 × 10-6 mA/mm。

    In complementary logic circuits, it is crucial to operate the n-channel and p-channel devices in the enhancement mode (E-mode) to minimize static power consumption. Therefore, the aim of this thesis is to develop normally off n-channel and p-channel AlGaN/GaN heterostructure field-effect transistors (HFETs) and compare two different epitaxial structures for their applicability in complementary metal-oxide-semiconductor (CMOS) architecture. By adjusting the etching time appropriately, the operating mode of both n-channel and p-channel devices can be transformed into E-mode.
    In the fabrication process of p-channel devices, surface treatment with diluted tetramethylammonium hydroxide (TMAH) solution is performed to reduce the damage caused by etching, followed by a long-duration nitrogen annealing process to improve the interface defects. Additionally, before the deposition of the source/drain metal, surface treatment with diluted hydrochloric acid (HCl) solution is applied to ensure the effective removal of oxide at the metal-semiconductor interface, leading to improved ohmic contact characteristics.
    The performance of the E-mode n-channel device is as follows: the maximum drain current density is 39.6 mA/mm at VG = 1 V, the maximum transconductance is 27.89 mS/mm, the threshold voltage is 0.19 V, the subthreshold swing and current on/off ratio are 282.75 mV/dec and 4.8 × 104, respectively, and the gate leakage current is 1.32 × 10-3 mA/mm. The performance of the E-mode p-channel device is as follows: the ID, max is -0.17 mA/mm at VG = -2 V, the gm, max is 1.1 mS/mm, the Vth is -2.84 V, the S.S. and current on/off ratio are 103.1 mV/dec and 5.66 × 105, respectively, and the gate leakage current is 3.17 × 10-6 mA/mm.

    中文摘要 I Abstract III 誌謝 V Contents IX List of Tables XIII List of Figures XIV Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation 5 1-3 Organization 9 Chapter 2 Basic Theory 10 2-1 GaN-based HFET 10 2-2 Metal-Semiconductor Contact 17 2-3 Transmission Line Model measurement 21 2-4 Oxygen Annealing 24 Chapter 3 Experiments 28 3-1 Experimental Equipment 28 3-1-1 Hot Plate and Oven 28 3-1-2 Spin Coater 29 3-1-3 Mask Aligner 30 3-1-4 ICP-RIE System 31 3-1-5 Alpha Step 32 3-1-6 Electron Beam Evaporator 33 3-1-7 Ultrasonic Cleaner 34 3-1-8 Rapid Thermal Annealing System 35 3-1-9 Semiconductor Analyzer 36 3-1-10 Focused Ion Beam System 37 3-1-11 Transmission Electron Microscope 38 3-1-12 Wire Bonder 39 3-2 Device fabrication 40 3-2-1 n-channel HFET process 41 3-2-1-1 Sample Cleaning 41 3-2-1-2 p-GaN Etching and Mesa Isolation 42 3-2-1-3 S/D Metal Stack Formation 44 3-2-1-4 Gate Metal Stack Formation 46 3-2-1-5 Schematic Procedures 48 3-2-2 p-channel HFET process 50 3-2-2-1 Sample Cleaning 50 3-2-2-2 S/D Metal Stack Formation 51 3-2-2-3 Mesa Isolation 53 3-2-2-4 Gate Recess Etching and Surface Treatment 55 3-2-2-5 Gate Metal Stack Formation 56 3-2-2-6 Schematic Procedures 57 Chapter 4 Results and Discussion 60 4-1 Physical property analysis 60 4-1-1 Transmission Electron Microscopy 60 4-1-2 Energy-Dispersive X-ray Spectroscopy 62 4-2 Electrical Characterization 64 4-2-1 n-channel HFET 64 4-2-1-1 TLM measurement 64 4-2-1-2 Output Characteristics (ID-VD) 68 4-2-1-3 Transfer Characteristics (ID-VG) 72 4-2-1-4 Subthreshold Swing & on/off Ratio 75 4-2-1-5 Gate Leakage Current (IG-VG) 78 4-3-1 p-channel HFET (Case 1) 81 4-3-1-1 TLM measurement 81 4-3-1-2 Output Characteristics (ID-VD) 86 4-3-1-3 Transfer Characteristics (ID-VG) 89 4-3-1-4 Subthreshold Swing & on/off Ratio 91 4-3-1-5 Gate Leakage Current (IG-VG) 93 4-4-1 p-channel HFET (Case 2) 95 4-4-1-1 Output Characteristics (ID-VD) 95 4-4-1-2 Transfer Characteristics (ID-VG) 98 4-4-1-3 Subthreshold Swing & on/off Ratio 100 4-4-1-4 Gate Leakage Current (IG-VG) 101 Chapter 5 Conclusion 103 Chapter 6 Future Work 105 References 106

    [1] S. J. Pearton, R. Deist, F. Ren, L. Liu, A. Y. Polyakov, and J. Kim, “Review of radiation damage in GaN-based materials and devices,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 31, no. 5, p. 050801, Sep. 2013, doi: 10.1116/1.4799504.
    [2] U. K. Mishra, P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs-an overview of device operation and applications," in Proceedings of the IEEE, vol. 90, no. 6, pp. 1022-1031, June. 2002, doi: 10.1109/JPROC.2002.1021567.
    [3] E. A. Jones, F. F. Wang, and D. Costinett, "Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 707-719, Sept. 2016, doi: 10.1109/JESTPE.2016.2582685.
    [4] T. Bhat, M. Mustafa, and M. R. Beigh, “Study of short channel effects in n-FinFET structure for Si, GaAs, GaSb and GaN channel materials,” Journal of Nano- and Electronic Physics, vol. 7, no. 3, p. 03010, Oct. 2015.
    [5] B. Wang, M. Riva, J. D. Bakos and A. Monti, "Integrated Circuit Implementation for a GaN HFET Driver Circuit," in IEEE Transactions on Industry Applications, vol. 46, no. 5, pp. 2056-2067, Sept.-Oct. 2010, doi: 10.1109/TIA.2010.2057499.
    [6] J. Chen, Z. Liu, H. Wang, Y. He, X. Zhu, J. Ning, J. Zhang, and Y. Hao, "A GaN Complementary FET Inverter With Excellent Noise Margins Monolithically Integrated With Power Gate-Injection HEMTs," in IEEE Transactions on Electron Devices, vol. 69, no. 1, pp. 51-56, Jan. 2022, doi: 10.1109/TED.2021.3126267.
    [7] A. Nakajima, S.-i. Nishizawa, H. Ohashi, H. Yonezawa, K. Tsutsui, K. Kakushima, H. Wakabayashi, and H. Iwai, "One-chip operation of GaN-based P-channel and N-channel heterojunction field effect transistors," 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), pp. 241-244, June. 2014, doi: 10.1109/ISPSD.2014.6856021.
    [8] X. Li, K. Geens, W. Guo, S. You, M. Zhao, D. Fahle, V. Odnoblyudov, G. Groeseneken, and S. Decoutere, "Demonstration of GaN Integrated Half-Bridge With On-Chip Drivers on 200-mm Engineered Substrates," in IEEE Electron Device Letters, vol. 40, no. 9, pp. 1499-1502, Sept. 2019, doi: 10.1109/LED.2019.2929417.
    [9] D. Reusch, J. Strydom and J. Glaser, "Improving high frequency DC-DC converter performance with monolithic half bridge GaN ICs," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 381-387, Sept. 2015, doi: 10.1109/ECCE.2015.7309713.
    [10] S. J. Bader, H. Lee, R. Chaudhuri, S. Huang, A. Hickman, A. Molnar, H. G. Xing, D. Jena, H. W. Then, N. Chowdhury, and T. Palacios, "Prospects for Wide Bandgap and Ultrawide Bandgap CMOS Devices," in IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4010-4020, Oct. 2020, doi: 10.1109/TED.2020.3010471.
    [11] Z. Zheng, W. Song, L. Zhang, S. Yang, H. Xu, R. K. -Y. Wong, J. Wei, and K. J. Chen, "Enhancement-Mode GaN p-Channel MOSFETs for Power Integration," 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 525-528, Sept. 2020, doi: 10.1109/ISPSD46842.2020.9170081.
    [12] H. Jin, Q. Jiang, S. Huang, X. Wang, Y. Wang, Z. Ji, X. Dai, C. Feng, J. Fan, K. Wei, J. Liu, Y. Zhong, Q. Sun, and X. Liu, "An Enhancement-Mode GaN p-FET With Improved Breakdown Voltage," in IEEE Electron Device Letters, vol. 43, no. 8, pp. 1191-1194, Aug. 2022, doi: 10.1109/LED.2022.3184998.
    [13] S. J. Bader, R. Chaudhuri, A. Hickman, K. Nomoto, S. Bharadwaj, H. W. Then, H. G. Xing, and D. Jena, "GaN/AlN Schottky-gate p-channel HFETs with InGaN contacts and 100 mA/mm on-current," 2019 IEEE International Electron Devices Meeting (IEDM), pp. 4.5.1-4.5.4, Dec. 2019, doi: 10.1109/IEDM19573.2019.8993532.
    [14] A. Raj, A. Krishna, N. Hatui, C. Gupta, R. Jang, S. Keller, and U. K. Mishra, "Demonstration of a GaN/AlGaN Superlattice-Based p-Channel FinFET With High ON-Current," in IEEE Electron Device Letters, vol. 41, no. 2, pp. 220-223, Feb. 2020, doi: 10.1109/LED.2019.2963428.
    [15] Z. Zheng, W. Song, L. Zhang, S. Yang, J. Wei and K. J. Chen, "High ION and ION/IOFF Ratio Enhancement-Mode Buried p-Channel GaN MOSFETs on p-GaN Gate Power HEMT Platform," in IEEE Electron Device Letters, vol. 41, no. 1, pp. 26-29, Jan. 2020, doi: 10.1109/LED.2019.2954035.
    [16] P. Kozodoy, H. Xing, S. P. DenBaars, U. K. Mishra, A. Saxler, R. Perrin, S. Elhamri, and W. C. Mitchel, “Heavy doping effects in Mg-doped GaN,” Journal of Applied Physics, vol. 87, no. 4, pp. 1832–1835, Feb. 2000, doi: 10.1063/1.372098.
    [17] Y.-L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 76, no. 19, pp. 2728–2730, May. 2000, doi: 10.1063/1.126457.
    [18] J. Meier and G. Bacher, “Progress and Challenges of InGaN/GaN-Based Core–Shell Microrod LEDs,” Materials, vol. 15, p. 1626, Feb. 2022, doi: 10.3390/ma15051626.
    [19] L. Dong and S. P. Alpay, “Polarization, piezoelectric properties, and elastic coefficients of InxGa1−xN solid solutions from first principles,” J Mater Sci, vol. 47, no. 21, pp. 7587–7593, Nov. 2012, doi: 10.1007/s10853-012-6351-0.
    [20] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 87, no. 1, pp. 334–344, Jan. 2000, doi: 10.1063/1.371866.
    [21] P. Shao, X. Fan, S. Li, S. Chen, H. Zhou, H. Liu, H. Guo, W. Xu, T. Tao, Z. Xie, H. Lu, K. Wang, B. Liu, D. Chen, Y. Zheng, and R. Zhang, “High density polarization-induced 2D hole gas enabled by elevating Al composition in GaN/AlGaN heterostructures,” Appl. Phys. Lett., vol. 122, no. 14, p. 142102, Apr. 2023, doi: 10.1063/5.0139158.
    [22] Y. He, J. Liu, M. Luo, and H. Shi, “Progress on the Microcavity Lasers Based on Microstructured Optical Fiber,” Electronics, vol. 12, pp. 1761, Mar. 2023, https://doi.org/10.3390/electronics12081761
    [23] T. Abbas and L. Slewa, “Transmission line method (TLM) measurement of (metal/ZnS) contact resistance,” International Journal of Nanoelectronics and Materials, vol. 8, pp. 111-120, Jan. 2015.
    [24] L. Li, M. Cui, H. Shao, Y. Dai, L. Chen, Z.-H. Zhang, J. Hoo, S. Guo, W. Lan, L. Cao, H. Xu, W. Guo, and J. Ye, “Demonstration of ohmic contact using MoOx/Al on p-GaN and the proposal of a reflective electrode for AlGaN-based DUV-LEDs,” Opt. Lett., vol. 45, no. 8, p. 2427, Apr. 2020, doi: 10.1364/OL.387275.
    [25] J.-K. Ho, C.-S. Jong, and C. C. Chiu, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 74, no. 9, p. 1275, Mar. 1999.
    [26] H. W. Jang, S. Y. Kim, and J.-L. Lee, “Mechanism for Ohmic contact formation of oxidized Ni/Au on p-type GaN,” Journal of Applied Physics, vol. 94, no. 6, pp. 1748-1752, doi: https://doi.org/10.1063/1.1586983.
    [27] J.-K. Ho, C.-S. Jong, and C. C. Chiu “Low-resistance ohmic contacts to p -type GaN achieved by the oxidation of Ni/Au films,” Journal of Applied Physics, vol. 86, no. 8, pp. 4491–4497, Oct. 1999, doi: 10.1063/1.371392.
    [28] I. Chary, A. Chandolu, B. Borisov, V. Kuryatkov, S. Nikishin, and M. Holtz, “Influence of Surface Treatment and Annealing Temperature on the Formation of Low-Resistance Au/Ni Ohmic Contacts to p-GaN,” Journal of Electronic Materials, vol. 38, no. 4, pp. 545–550, Apr. 2009, doi: 10.1007/s11664-008-0655-5.
    [29] Y. Cao, “Methods to achieve Ohmic contact to p-GaN,” in International Conference on Optoelectronic Materials and Devices (ICOMD 2021), p. 49, Feb. 2022, doi: 10.1117/12.2628557.
    [30] X. J. Li, D. G. Zhao, D. S. Jiang, Z. S. Liu, P. Chen, J. J. Zhu, L. C. Le, J. Yang, X. G. He, S. M. Zhang, B. S. Zhang, J. P. Liu, and H. Yang, “The significant effect of the thickness of Ni film on the performance of the Ni/Au Ohmic contact to p-GaN,” Journal of Applied Physics, vol. 116, no. 16, p. 163708, Oct. 2014, doi: 10.1063/1.4900729.
    [31] Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, and M. Murakami, “Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN,” Journal of Electronic Materials, vol. 28, no. 3, pp. 341–346, Mar. 1999, doi: 10.1007/s11664-999-0037-7.
    [32] A.O. Conde, F.J.G. Sánchez, J.J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, “A review of recent MOSFET threshold voltage extraction methods,” Microelectron. Reliab., vol. 42, no. 4–5, pp. 583–596, Apr. 2002.
    [33] M. Azize and T. Palacios, “Top-down fabrication of AlGaN/GaN nanoribbons,” Appl. Phys. Lett., vol. 98, no. 4, p. 042103, Jan. 2011.
    [34] S. Haffouz, H. Tang, J. A. Bardwell, E. M. Hsu, J. B. Webb, and S. Rolfe, “AlGaN/GaN field effect transistors with C-doped GaN buffer layer as an electrical isolation template grown by molecular beam epitaxy,” Solid-State Electronics, vol. 49, no. 5, pp. 802–807, May 2005, doi: 10.1016/j.sse.2005.01.012.

    無法下載圖示 校內:2028-08-14公開
    校外:2028-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE