簡易檢索 / 詳目顯示

研究生: 吳昱澤
Wu, Yu-Tse
論文名稱: 在半相關衰減通道之可重構智慧表面被動波束成形設計
RIS Passive Beamforming Design over Semi-correlated Fading Channels
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 70
中文關鍵詞: 可重構智慧表面使用者分群通道硬化相關通道相關係數
外文關鍵詞: Reconfigurable intelligent surface, user grouping, channel hardening, correlated channel, correlation coefficient
相關次數: 點閱:146下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可重構智慧表面是由大量的被動反射元件組成,並且可以藉由調整各個元件的相位,將入射的電磁波訊號反射至特定的方位。由於此項特性,可重構智慧表面在近幾年備受關注,而且被視為在未來的無線通訊架構下極具潛力的節能技術。在本篇論文中,我們考量一個由可重構智慧表面輔助的多用戶通訊場景,在此架構下,基地台的波束成形以及可重構智慧表面的相位普遍藉由最佳化理論來設計。雖然現存的研究證實了可重構智慧表面帶來的巨大增益,不過由於基地台、可重構智慧表面與用戶之間的耦合通道,同時設計基地台與可重構智慧表面的波束成形會產生非常高的複雜度。此外,可重構智慧表面的次波長結構以及傳播環境下散射的不足都會產生空間相關性,進而導致嚴重的用戶間干擾。在此篇論文中,我們提出兩種波束成形設計方式,相較於利用最佳化理論的設計策略,此兩種設計方式擁有較低的複雜度。同時我們也利用使用者分群技術來降低空間相關性帶來的嚴重干擾,由於使用者分群技術的應用,可重構智慧表面的配置模式也根據是否參考分群結果來調整相位而分成兩種。藉由模擬結果可以發現,對比於未使用分群技術的情況,我們提出的方式可以得到更高的整體傳輸率。除此之外,我們推導出一個通用的表示式來代表可重構智慧表面輔助系統中相關係數的期望值,並藉由數值結果來證實此理論分析的準確性,甚至可以直覺地觀察可重構智慧表面輔助系統的通道硬化特性。

    This thesis considers the reconfigurable intelligent surface (RIS)-assisted multi-user communication scenario, where an RIS is used to assist the base station (BS) for serving multiple users. The RIS consisting of passive reflecting elements can manipulate the reflected direction of the incoming electromagnetic waves and thus it offers a new design dimension to the system designer. To jointly determine the BS beamforming and RIS phase shifts, the tools from optimization theory is commonly used. While the existing work has shown significant gain of RIS, the complexity of solving the joint BS and RIS beamforming is quite high due to the coupled structure of the cascade channel from the BS through RIS to the user. In addition, the sub-wavelength structure of the RIS and the insufficient scattering in the propagation environment introduce spatial correlation that may cause strong interference to users. In this thesis, we propose two beamforming design strategies with much lower complexity than that using the optimization theory. To handle strong interference due to spatial correlation, we also consider user grouping that leads to two configuring modes for RIS depending on whether the grouping result is taken into account when determining the RIS phase shifts. Simulation results are presented to demonstrate the superior sum rate achieved by the proposed methods than that without user grouping. Moreover, we derive a general expression to represent the expected value of the correlation coefficient in the RIS-assisted system. The numerical results depict the accuracy of our analysis and provide insights into property of channel hardening in RIS with a large number of antenna elements.

    Chinese Abstract i Abstract ii Acknowledgement iii List of Figures vi List of Tables viii List of Symbols ix List of Acronyms xiii 1 Introduction and Related Work 1 1.1 Motivation 1 1.2 Background 3 1.2.1 User Grouping 3 1.2.2 Channel Hardening 4 1.2.3 Alternating Optimization 4 1.3 Related Work 5 2 System Model 7 2.1 RIS-assisted Multi-user Communication Scenario 7 2.2 Signal Model 8 2.3 Channel Model 10 2.4 Correlation-based Grouping Mechanism 11 3 RIS Passive Beamforming Design 13 3.1 Low-complexity Beamforming Design 14 3.1.1 Unified Mode 16 3.1.2 Group-based Mode 17 3.1.3 Two-stage Target Function 18 3.2 User-based Beamforming Design 20 3.3 Complexity Analysis 22 4 Correlation Coefficient Analysis 23 4.1 Expectation of Correlation Coefficient 24 4.2 Convergence of Correlation Coefficient 39 5 Analytical Results and Simulation 43 5.1 Simulation Results of Correlation Coefficient 45 5.1.1 Theoretical Analysis 45 5.1.2 Correlation Coefficient in Different Channels 48 5.2 Impact of Grouping Threshold 50 5.3 Impact of RIS Elements 54 5.4 Impact of Configuring Proportion 58 5.5 Impact of Users 58 5.6 The Comparison of Different Target Function 61 5.6.1 Impact of Grouping Threshold 61 5.6.2 Impact of Correlation Threshold 61 6 Conclusions 65 6.1 Summary of Thesis 65 6.2 Future Work 66 References 67

    [1] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
    [2] W. T. et al., “MIMO transmission through reconfigurable intelligent surface : System design, analysis, and implementation,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2683–2699, Nov. 2020.
    [3] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Communications Magazine, vol. 56, no. 9, pp. 162–169, Sep. 2018.
    [4] E. Basar, M. D. Renzo, J. D. Rosny, M. Debbah, M. S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.
    [5] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Communications Magazine, vol. 58, no. 1, pp. 106–112, Jan. 2020.
    [6] ——, “Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design,” in Proc. 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6.
    [7] Y. Yang, B. Zheng, S. Zhang, , and R. Zhang, “Intelligent reflecting surface meets ofdm: Protocol design and rate maximization,” IEEE Transactions Communications, vol. 68, no. 7, pp. 4522–4535, Jul. 2020.
    [8] W. Chen, X. Ma, Z. Li, and N. Kuang, “Sum-rate maximization for intelligent reflecting surface based terahertz communication systems,” in Proc. 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops), 2019, pp. 153–157.
    [9] T. Takano, S. Araki, and E. Hanayama, “A study of electrical characteristics of a mesh reflecting surface,” in Proc. IEEE Antennas and Propagation Society International Symposium 1992 Digest, 1992, pp. 1208–1211 vol.2.
    [10] A. Miura and M. Tanaka, “A mesh reflecting surface with electrical characteristics independent on direction of electric field of incident wave,” in Proc. IEEE Antennas and Propagation Society Symposium, 2004., vol. 1, 2004, pp. 33–36 Vol.1.
    [11] A. Kelkar, “Flaps: conformal phased reflecting surfaces,” in Proc. Proceedings of the 1991 IEEE National Radar Conference, 1991, pp. 58–62.
    [12] S. He, H. Yang, Y. Jiang, W. Deng, and W. Zhu, “Recent advances in mems metasurfaces and their applications on tunable lens,” Micromachines, vol. 10, no. 8, 2019.
    [13] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surfaceaided wireless communications: A tutorial,” IEEE Transactions on Wireless Communications, vol. 69, no. 5, pp. 3313–3351, 2021.
    [14] Y. Tang, G. Ma, H. Xie, J. Xu, and X. Han, “Joint transmit and reflective beamforming design for irs-assisted multiuser miso swipt systems,” in Proc. IEEE International Conference on Communications (ICC), 2020, pp. 1–6.
    [15] S. Bang, J. Kim, G. Yoon, T. Tanaka, and J. Rho, “Recent advances in tunable and reconfigurable metamaterials,” Micromachines, vol. 9, no. 11, Oct. 2018.
    [16] T. V. Chien, H. Q. Ngo, S. Chatzinotas, M. D. Renzo, and B. Ottersten, “Reconfigurable intelligent surface-assisted cell-free massive mimo systems over spatiallycorrelated channels,” arXiv: 2104.08648, 2021.
    [17] M. Alkhaled, E. Alsusa, and W. Pramudito, “Adaptive user grouping algorithm for the downlink massive mimo systems,” in Proc. 2016 IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2016, pp. 1–6.
    [18] R. Jalaja, V. Thirumavalavan, P. Velmurugan, and S. Thiruvengadam, “Spatially correlated dual hop ris aided next generation wireless systems: An outage perspective,” IEEE Access, vol. 9, pp. 56 127–56 139, 2021.
    [19] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell tdd systems,” IEEE Transactions on Wireless Communications, vol. 10, no. 8, pp. 2640–2651, Aug. 2011.
    [20] F. Fernandes, A. Ashikhmin, and T. Marzetta, “Inter-cell interference in noncooperative tdd large scale antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 192–201, Feb. 2013.
    [21] J. Nam, A. Adhikary, J. Ahn, and G. Caire, “Joint spatial division and multiplexing: Opportunistic beamforming, user grouping and simplified downlink scheduling,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 876–890, Oct. 2014.
    [22] Y. Xu, G. Yue, and S. Mao, “User grouping for massive mimo in fdd systems: New design methods and analysis,” IEEE Access, vol. 2, pp. 947–959, 2014.
    [23] H. Q. Ngo and E. G. Larsson, “No downlink pilots are needed in tdd massive mimo,” IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp. 2921– 2935, May 2017.
    [24] N. Pourjafari and J. S. Harsini, “On the complete convergence of channel hardening and favorable propagation properties in massive-mimo communications systems,” Journal of Mathematical Modeling, vol. 7, no. 4, pp. 429–443, 2019.
    [25] J. C. Bezdek and R. J. Hathaway, “Some notes on alternating optimization,” in Advances in Soft Computing — AFSS 2002, 2002, pp. 288–300.
    [26] J. Zhao, “A survey of intelligent reflecting surfaces (irss): Towards 6g wireless communication networks,” arXiv: 1907.04789, 2019.
    [27] C. Huang, A. Zappone, M. Debbah, and C. Yuen, “Achievable rate maximization by passive intelligent mirrors,” in Proc. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 3714–3718.
    [28] X. Li, J. Fang, F. Gao, and H. Li, “Joint active and passive beamforming for intelligent reflecting surface-assisted massive mimo systems,” arXiv: 1912.00728, 2019.
    [29] Q. Nadeem, H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah, and M. Alouini, “Intelligent reflecting surface-assisted multi-user miso communication: Channel estimation and beamforming design,” IEEE Open Journal of the Communications Society, vol. 1, pp. 661–680, 2020.
    [30] W. Yan, X. Yuan, Z. He, and X. Kuai, “Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser mimo systems,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1793–1808, 2020.
    [31] B. Zheng, Q. Wu, and R. Zhang, “Intelligent reflecting surface-assisted multiple access with user pairing: Noma or oma,” IEEE Communications Letters, vol. 24, no. 4, pp. 753–757, Apr. 2020.
    [32] Q. Wu and R. Zhang, “Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts,” IEEE Transactions on Wireless Communications, vol. 68, no. 3, pp. 7830–7833, Mar. 2020.
    [33] C. Wang and R. D. Murch, “Adaptive downlink multi-user mimo wireless systems for correlated channels with imperfect csi,” IEEE Transactions on Wireless Communications, vol. 5, no. 9, pp. 2435–2446, Sep. 2006.
    [34] 3GPP TS 38.211, “3rd generation partnership project; technical specification group radio access network;nr;physical channels and modulation (release 16),” V16.2.0, Jun. 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE