簡易檢索 / 詳目顯示

研究生: 林茂森
Lin, Mon-Sen
論文名稱: 以液相沉積法沉積鋇摻雜二氧化鈦薄膜並應用於氮化鋁鎵/氮化鎵金氧半結構高電子遷移率電晶體
Liquid-phase-deposited High Dielectric Barium-Doped Titanium Oxide for AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 71
中文關鍵詞: 氮化鎵鋇摻雜二氧化鈦液相沉積法
外文關鍵詞: GaN, Ba-doped TiO2, Liquid Phase Deposition (LPD)
相關次數: 點閱:85下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦膜為一高介電係數材料,並在加入鋇形成鋇摻雜二氧化鈦膜之後會增加其介電係數,因此我們研究以液相沉積法來成長鋇摻雜二氧化鈦膜,並應用於氮化鎵材料上製作氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體。液相沉積法為一相當低成本且容易使用之氧化層沉積技術,並可於室溫下使用。經由X光譜儀與二次離子質譜儀,可確定鋇摻雜二氧化鈦膜已沉積於氮化鎵材料上,並透過掃描電子顯微鏡及原子力顯微鏡來觀察薄膜的表面狀態。沉積的速率約可達到每小時76奈米,當我們成長76奈米厚的氧化層時,氧化層漏電流密度可達到3.5×10-7A/cm2而電場約為-6MV/cm,崩潰電場則可以達到-9.7MV/cm以上。在經過高純度氮氣環境下的退火處理後,藉由X光繞射我們觀察到鋇摻雜二氧化鈦氧化層由非晶相轉換至金紅石相且結晶顆粒增大,表面粗糙度也有所改善。在經過150℃退火處理後,鋇摻雜二氧化鈦氧化層漏電流密度可達到2×10-8A/cm2而電場約為-4MV/cm,崩潰電場則可以達到-13MV/cm。與液相沉積之二氧化鈦膜相較,不但具有較高介電係數,也能提升介面品質。
    在元件應用方面,我們成功利用液相沉積法沉積鋇摻雜二氧化鈦薄膜,並將經過150℃退火後的氧化層應用於氮化鋁鎵/氮化鎵高電子遷移率電晶體形成金氧半高電子遷移率電晶體。與傳統高電子遷移率電晶體比較,金氧半高電子遷移率電晶體最大汲極電流由495 mA/mm 提升到815 mA/mm,最大轉導由150 mS/mm降到130 mS/mm,此外金氧半結構閘極漏電流可以改善超過8千倍,亦可改善次臨界電壓特性,另外,我們亦藉由比較脈衝量測的結果,顯示金氧半結構表面狀態被鈍化層所抑制,進而抑制電流坍塌現象。

    Utilizing titanium dioxide as the high-k material constant for dielectric applications, it has been found that dielectric constant can further increase by incorporating barium. In this thesis, Ba-doped TiO2 film is prepared through liquid phase deposition and used as gate dielectric in AlGaN/GaN MOS-HEMT. Liquid phase deposition provides a low-cost and low-complex method in forming oxide layers at room temperature. XPS and SIMS are used to demonstrate that Ba-doped TiO2 film could be deposited successfully on GaN materials. SEM and AFM are also used to observe the surface of the Ba-doped TiO2 film. The deposition rate is about 76 nm/hr. The leakage current is about 3.5×10-7A/cm2 at -6 MV/cm; in addition, the breakdown field is more than -9.7 MV/cm when the oxide thickness is 76 nm. Upon annealing under an atmosphere of high purity N2, the crystal phase of the Ba-doped TiO2 transformed from amorphous to rutile phases accompanied by an increase in crystal size. Surface roughness also improved significantly after thermal treatment. The leakage current is about 2×10-8A/cm2 in a -4 MV/cm electric field, and the breakdown field reached -13 MV/cm after annealing at 150℃ for 30 minutes. Compared with the LPD-TiO2 film, Ba-doped TiO2 film demonstrated higher dielectric constant and better interface quality.
    The AlGaN/GaN MOS-HEMT with a liquid phase deposited Ba-doped TiO2 annealed under 150 ℃ as gate insulator is fabricated successfully. Compared with the conventional HEMT, the maximum drain current density increases from 495 mA/mm to 815 mA/mm, whereas the peak extrinsic transconductance increased from 150 mS/mm to 130 mS/mm in the MOS-HEMT structure. The gate leakage current density improved significantly by nearly 8000 times after the insertion Ba-doped TiO2 insulator between gate and channel in MOS-HEMT. Pulse measurement indicates that the MOS-HEMT structure can reduce the effect of the surface state and suppress the current collapse.

    Contents Abstract List of Tables List of Figures Chapter 1 Introduction 1 1.1 Motivation 1 1.2 High Dielectric Constant Materials 5 1.3 Organization 6 Chapter 2 LPD System 8 2.1 Introduction to the Ba-doped TiO2 film Material 8 2.2 LPD System 11 2.3 Experimental Procedures 13 Chapter 3 Properties of the Ba-doped TiO2 Oxide Films 17 3.1 Introduction 17 3.2 Physical and Chemical Properties 19 3.2.1 The deposition rate of thickness 19 3.2.2 SIMS depth profile 24 3.2.3 XPS spectra 26 3.2.4 XRD analysis 28 3.3 Surface Morphology 30 3.3.1 SEM analysis 30 3.3.2 AFM analysis 32 3.4 Electrical Characteristics 37 3.4.1 Introduction 37 3.4.2 Leakage current characteristic 38 3.4.3 Capacitance-Voltage measurement 41 Chapter 4 Fabrication and Characteristics of the AlGaN/GaN MOS-HEMT with liquid phase deposited Ba-doped TiO2 as gate insulator 43 4.1 Introduction 43 4.2 The Device Structure 44 4.3 AlGaN/GaN MOS-HEMT with LPD Process 46 4.4 Performance of the AlGaN/GaN MOS-HEMT 52 4.4.1 The saturation drain current 52 4.4.2 The transconductance 54 4.4.3 The gate leakage current 56 4.4.5 Subthreshold swing 59 4.4.6 The current collapse 61 4.5 Summary 64 Chapter 5 Conclusions 65 References 66

    [1] H. Morkoc, S. STrite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, pp. 1363-1398, 1994.
    [2] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
    [3] I. Nomura, K. Kishino, and A. Kikuchi, “Theoretical estimation of threshold current of cubic GaInN/GaN/AlGaN quantum well lasers,” Solid-State Electronics., vol. 41, pp. 283-286, 1997.
    [4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
    [5] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Elect. Dev., vol. 41, pp. 1481-1483, 1994.
    [6] M. A. Kahn, J. N. Kuznia, A. R. Bhattrai, and D. T. Olson, “Metal contacts to gallium nitride,” Appl. Phys. Lett., vol. 62, pp. 2859-2861, 1993.
    [7] Y. Uzawa, Z. Wang, A. Osinsky, and B. Komiyama, “Submillimeter wave responses in NbN/AlN/NbN tunnel junctions,” Appl. Phys. Lett., vol. 66, pp. 1992-1994, 1995.
    [8] S. J. Pearton, GaN and Related Materials, Gordon and Breach Science Publishers, 1997.
    [9] Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse, and J. M. Redwing, “High voltage (450 V) GaN schottky rectifiers,” Appl. Phys. Lett., vol. 74, pp. 1266-1268, 1999.
    [10] M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, “Monte Carlo calculation of the velocity-field relationship for gallium nitride,” Appl. Phys. Lett., vol. 26, pp. 625-627, 1975.
    [11] U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of wurtzite GaN,” J. Appl. Phys., vol. 82, pp. 1649-1655, 1997.
    [12] R. Gaska, J. W. Yang, A. Osinsky, Q. chen, M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur, “Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates,” Appl. Phys. Lett., vol. 72, pp. 707-709, 1998.
    [13] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 73, pp. 3893-3895, 1998.
    [14] M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J. N. Baillargeon, A. R. Kortan., J. P. Mannaerts, A. Y. Cho, C. M. Lee, J. I. Chyi, and T. S. Lay, “Properties of Ga2O3(Gd2O3)/GaN metal–insulator–semiconductor diodes,” J. Vac. Sci. Technol. B, vol. 18, pp. 1453-1456, 2000.
    [15] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Device Lett., vol. 21, pp. 63-65, 2000.
    [16] J. C. Lee, “Ultra-thin gate dielectric and High-k dielectric,”IEEE EDS vanguard series of independent short courses, pp. 129-133, 2005.
    [17] J. D. Deloach, G. Scarel, and C. R. Aita, “Correlation between titania film structure and near ultraviolet optical absorption,”J. Appl. Phys., vol. 85, pp. 2377-2348, 1999.
    [18] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
    [19] X. H. Xu, M. Wang, Y. Hou, et al., “Effect of thermal annealing on structure properties, morphologies and electrical properties of TiO2 thin films frown by MOCVD,” Cryst. Res. Technol., vol. 37, pp. 431-439, 2002.
    [20] M. P. Houng, Y. H. Wang, C. J. Huang, S. P. Huang, and J. H. Horng, “Quality optimization of liquid phase deposition SiO2 films on gallium arsenide,” Solid-State Electronics, vol. 44, pp. 1917-1923, 2000.
    [21] J. M. Wu and C. J. Chen, “Dielectric properties of (Ba, Nb) doped Ti02 ceramics: Migration mechanism and roles of (Ba, Nb),” J. Mater. Sci., vol. 23, p. 4157 1988.
    [22] J. J. Cheng and J. M. Wu, “Effect of power characteristic on electrical properties of (Ba,Bi,Nb)-added TiO2 ceramics,” Jpn. J. Appl. Phys., Part 1, vol. 35, p. 4704 1996.
    [23] Ulrike Diebold, “The surface science of titanium dioxide,” Surface Science Reports, vol. 48, pp. 53-229, 2003.
    [24] D. G. Howitt and A. B. Harker, “The oriented growth of anatase in thin films of amorphous titania,” J. Mater. Res., vol. 2, pp. 201-210, 1987.
    [25] F. Edelman, A. Rothshild, Y. Komem, V. Mikhelashvili, A. Chack, and F. Cosandey, “E-Gun sputtered and reactive ion sputtered TiO2 thin films for gas sensors,” Electron Technology, vol. 33, pp. 89-107, 1999.
    [26] J. D. DeLoach, G. Scarel, and C. R. Aita, “Correlation between titania film structure and near ultraviolet optical absorption,” J. Appl. Phys., vol. 85, pp. 2377-2384, 1999.
    [27] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
    [28] P. Alexandrov, J. Koprinarova, and D. Todorov, “Dielectric properties of TiO2-films reactively sputtered from Ti in an RF magnetron,” Vacuum, vol. 47, p. 1333, 1996.
    [29] M. K. Lee, K. W. Tung, and C. M. Yu, “Deposition of high dielectric barium-doped titanium silicon oxide films on silicon using hexafluorotitanic acid and barium nitrate,” Electrochemical and Solid-State Letters, vol. 7, pp. B42-B44, 2004.
    [30] J. A. Duffy, Bonding Energy Levels and Bands in Inorganic Solids, John Wiley:
    New York, 1990.
    [31] S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Elect. Dev., vol. 44, pp. 104-109, 1997.
    [32] B. S. Jeong, J. D. Budai, and D. P. Norton, “Epitaxial stabilization of single crystal anatase films via reactive sputter deposition,” Thin Solid Films, vol. 422, pp. 166-169, 2002.
    [33] Y. Abe and T. Fukuda, “TiO2 thin films formed by electron cyclotron resonance plasma oxidation of Ti thin films,” J. J. Appl. Phys., vol. 32, pp. 1167-1168, 1993.
    [34] V. Mikhelashvili and G. Eisensteina, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation, ” J. Appl. Phys., vol. 89, pp. 3256-3269, 2001.
    [35] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988.
    [36] C. Y. Chen and J. G. Hwu, “Effect of postoxidation annealing on the reliability of rapid thermal thin gate oxides,” IEEE Electron Device Lett., vol. 18, pp. 1-3, 1997.
    [37] J. Jeng and J. G.. Hwu, “Thin-gate oxides prepared by pure water anodization followed by rapid thermal densification,” IEEE Electron Device Lett., vol. 17, pp. 575-577, 1996.
    [38] P. M. Kumar, S. Badrinarayanan, and M. Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, pp. 122-130, 2000.
    [39] R. R. Sumathi, N. V. Giridharan, R. Jayavel, J. Kumar, “BaTiO3 as an insulating layer for InP-based metal-insulator–semiconductor structures,” Materials Letters, vol. 51, pp. 56-60, 2001.
    [40] J. R. Sumyth, A. J. Erlank, R. S. Rickard, R. V. Danchin, “Lindsleyite (Ba) and mathiasite (K): two new chromium-titanates in the crichtonite series from the upper mantle,” American Mineralogist, vol. 68, pp. 494-505, 1983.
    [41] T. Y. Wu, S. K. Lin, P. W. Sze, J. J Huang, W.C. Chien, C. C. Hu, M. J. Tsai, and Y. H. Wang, “AlGaN/GaN MOSHEMTs with liquid-phase-deposited TiO2 as gate dielectric,” IEEE Trans. Elect. Dev., vol. 56, pp. 2911-2916, 2009.
    [42] C. Liu, E. F. Chor, and L. S. Tan, “Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 88, pp. 173504-1-173504-3, 2006.
    [43] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Electrical characterization of GaN p-n junctions with and without threading dislocations,” Appl. Phys. Lett., vol. 73, pp. 975-977, 1998.
    [44] H. Kim, J. Lee, D. Liu, and W. Lu, “Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing,” Appl. Phys. Lett., vol. 86, pp. 143505-1-143505-3, 2005.
    [45] D. A. Neamen, Semiconductor Physics And Devices, Chapter 12, McGraw-Hill, 2003.
    [46] J. W. Chung, J. C. Roberts, E. L. Piner, and T. Palacios, “Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 29, p. 11, 2008.
    [47] C. C. Yeh, Y. J. Lin, S. K. Lin, and Y. H. Wang, “Plasma treatment on plastic substrates for liquid-phase-deposited SiO2,” J. Vac. Sci. Technol. B, vol. 25, pp. 1635-1639, 2007.

    下載圖示 校內:2015-08-30公開
    校外:2015-08-30公開
    QR CODE