簡易檢索 / 詳目顯示

研究生: 黃智玟
Huang, Chih-Wen
論文名稱: 探討CDK1在出血性大腸桿菌誘發宿主微絨毛肌動蛋白重新排列之現象中所扮演的角色
Characterization of CDK1 in the Enterohemorrhagic E. coli-induced Host Microvillar Actin Rearrangement
指導教授: 陳昌熙
Chen, Chang-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 71
中文關鍵詞: 出血性大腸桿菌線蟲人類大腸直腸癌細胞株微絨毛肌動蛋白重新排列細胞週期蛋白B3週期蛋白依賴性激酶1
外文關鍵詞: Enterohemorrhagic E. coli (EHEC), C. elegans, Caco-2 cells, microvillar actin rearrangement, CCNB3, CDK1
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 出血性大腸桿菌血清型O157:H7屬於一種人類的致病菌,會導致人類出現嚴重症狀,例如出血性腸炎、溶血性尿毒症等等症狀甚至會導致死亡,而出血性大腸桿菌血清型O157:H7主要是藉由糞口途徑進入人體並且寄殖在人類的腸道。在臨床方面,目前還沒有較有效的抗生素能夠治療出血性大腸桿菌感染所導致的症狀,因此更進一步的了解出血性大腸桿菌的致病機轉是必須的。從先前許多研究指出出血性大腸桿菌感染宿主時會出現A/E lesion的病理特徵,並且使得宿主腸道的微絨毛出現抹除的現象,而在我們的研究中也發現出血性大腸桿菌感染線蟲會出現微絨毛肌動蛋白重新排列的現象。為了去釐清參予出血性大腸桿菌誘發微絨毛肌動蛋白重新排列的宿主因子,我們利用核糖核酸抑制(RNAi)的技術來找出在出血性大腸桿菌誘發微絨毛肌動蛋白重新排列的過程中參予的宿主因子,在找到的宿主基因中,抑制cyb-3基因能夠最顯著阻止出血性大腸桿菌誘發的病理特徵。在G2/M時期,由cyb-3基因轉譯出的細胞週期蛋白B3能夠透過和週期蛋白依賴性激酶1(CDK1)結合形成活化態的複合體進而調控細胞週期。因此我們想去探討細胞週期蛋白B3以及週期蛋白依賴性激酶1(CDK1)在出血性大腸桿菌誘發哺乳動物細胞微絨毛肌動蛋白重新排列的現象中所扮演的角色,在我們的結果中發現當出血性大腸桿菌感染人類大腸直腸癌細胞株(Caco-2 cells)時會導致在G2/M時期的細胞數顯著得增加,接著我們利用也利用掃描式電子顯微鏡觀察腸道細胞表面上微絨毛的結構,根據我們的實驗證實了週期蛋白依賴性激酶1(CDK1)對於出血性大腸桿菌誘發的病理機制是必需的,並且我們也發現週期蛋白依賴性激酶1(CDK1)的酵素受質diaphanous-related formin 1 (DIAPH1)也參予在出血性大腸桿菌誘發的病理機制中。總結我們的所有實驗結果,我們發現週期蛋白依賴性激酶1(CDK1)在出血性大腸桿菌誘發哺乳動物細胞微絨毛肌動蛋白重新排列的過程中扮演重要的角色。

    Enterohemorrhagic E. coli (EHEC) serotype O157:H7 is a human pathogen that can cause serious diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS) and even death. EHEC is transmitted to humans primarily through the fecal–oral route and colonizing on human intestine. There are no available antibiotics to improve the course of disease, therefore understanding the pathogenesis of EHEC is required. Previous studies indicated that EHEC can cause specific attaching and effacing (A/E) lesions which lead to microvillar effacement in host intestine. Moreover, in our studies found there is microvillar actin rearrangement in C. elegans during EHEC infection. To identify the host factors required for this EHEC-induced microvillar actin rearrangement, we conducted a genetic suppressor screen to identify the host genes that are required for the EHEC-induced microvillar actin rearrangement. Among the genes identified, knockdown of the cyb-3 gene significantly abolished this EHEC-induced pathology. Cyclin B3, encoded by cyb-3, regulates cell cycle through binding to the cyclin-dependent kinase 1 (CDK1) and then forming an activating complex during G2/M phase. We therefore aimed to study the role of cyclin B3 and CDK1 in mammalian cells during EHEC infection. We found that when the Caco-2 cells, which derived from a human colorectal carcinoma, are infected with EHEC, the G2/M phase population is significantly increased. Next, we monitored the morphology of human intestinal microvilli after EHEC infection by scanning electron microscopy (SEM). In these experiments, we demonstrated that CDK1 is essential for the EHEC-induced microvillar actin rearrangement. Moreover, we found that diaphanous-related formin 1 (DIAPH), a CDK1 kinase substrate, also involves in this EHEC-induced pathology. Taken all together, our current data showed that CDK1 plays an important role in the EHEC-induced microvillar actin rearrangement in mammalian cells.

    摘要 I Abstract III 誌謝 V Introduction 1 Enterohemorrhagic Escherichia coli (EHEC) 1 Attaching and effacing (A/E) lesion of EHEC 1 EHEC virulence factors 2 Animal model: Caenorhabditis elegans 2 EHEC-induced ACT-5 ectopic expression in C. elegans 3 Genetic suppressor screen for host factors required for EHEC-induced ACT-5 ectopic expression 4 CYB-3 (CCNB3) and CDK-1 (CDK1) 4 Cell model: Caco-2 cells 5 The significance of this study 6 Materials and methods 7 Nematode strains 7 Bacterial strains 7 Cell culture 8 EHEC Infection 9 Cells synchronize by thymidine and Flow cytometry 9 Western blotting 10 Plasmid construction and Transfection 15 Quantitative RT-PCR 17 Scanning electron microscopy 19 Immunofluorescence microscopy 20 Specific CDK-1 Inhibitor treatment in vitro 21 Specific CDK-1 Inhibitor treatment in vivo 21 C. elegans ACT-5 Ectopic Expression assay 22 Results 23 Gram negative intestinal pathogens induce significant microvillar actin (ACT-5) ectopic expression in C. elegans during five days infection 23 G2/M population of cell cycle is increased during EHEC infection 24 Microvillar actin rearrangement can be observed during EHEC infection 25 CCNB3 is essential for EHEC-induced microvillar effacement 26 CDK1 plays an important role in EHEC-induced microvillar effacement 27 DIAPH1 may be induced and regulated by CDK1 and CCNB3 during EHEC infection 28 Type III secretion system may not involve in EHEC-induced microvillar effacement 29 CDK1 may involves in the attachment of EHEC-induced A/E lesion 30 Conclusion 32 Discussion 33 Reference 35 Figures 39 Fig. 1 Gram negative intestinal pathogens induce significant microvillar actin (ACT-5) ectopic expression in C. elegans during five days infection. 40 Fig. 2 The cell population of G2/M phase was induced during EHEC infection. 45 Fig. 3 Microvillar actin rearrangement can be observed during EHEC infection. 47 Fig. 4 CCNB3 is essential for EHEC-induced microvillar actin rearrangement. 50 Fig. 5 CDK1 plays an important role in EHEC-induced microvillar effacement. 55 Fig. 6 DIAPH1 may be induced and regulated by CDK1 and CCNB3 during EHEC infection. 59 Fig. 7 Type III secretion system may not involve in EHEC-induced microvillar effacement. 64 Fig. 8 CDK1 may involves in the attachment of EHEC-induced A/E lesion. 68 Fig. 9 The model of EHEC-induced microvillar actin rearrangement in mammalian cells. 69 Appendix 70 Appendix 1 Bacterial strains 70 Appendix 2 Genetic suppressor screen results 71

    1. Girard, F., et al., Interaction of enterohemorrhagic Escherichia coli O157: H7 with mouse intestinal mucosa. FEMS microbiology letters, 2008. 283(2): p. 196-202.
    2. Kaper, J.B., J.P. Nataro, and H.L. Mobley, Pathogenic escherichia coli. Nature Reviews Microbiology, 2004. 2(2): p. 123-140.
    3. Frankel, G. and A.D. Phillips, Attaching effacing Escherichia coli and paradigms of Tir‐triggered actin polymerization: getting off the pedestal. Cellular microbiology, 2008. 10(3): p. 549-556.
    4. Tzipori, S., et al., The pathogenesis of hemorrhagic colitis caused by Escherichia coli O157: H7 in gnotobiotic piglets. The Journal of infectious diseases, 1986. 154(4): p. 712-716.
    5. Büttner, D., Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant-and animal-pathogenic bacteria. Microbiology and Molecular Biology Reviews, 2012. 76(2): p. 262-310.
    6. Stevens, M.P. and G.M. Frankel, The locus of enterocyte effacement and associated virulence factors of enterohemorrhagic Escherichia coli. Microbiology spectrum, 2014. 2(4).
    7. Nguyen, Y. and V. Sperandio, Enterohemorrhagic E. coli (EHEC) pathogenesis. 2012.
    8. Kenny, B., et al., Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell, 1997. 91(4): p. 511-520.
    9. Goldstein, B., Sydney Brenner on the Genetics of Caenorhabditis elegans. Genetics, 2016. 204(1): p. 1-2.
    10. Goldstein, B. and N. King, The Future of Cell Biology: Emerging Model Organisms. Trends in Cell Biology, 2016. 26(11): p. 818-824.
    11. Rengarajan, S. and E.A. Hallem, Olfactory circuits and behaviors of nematodes. Current Opinion in Neurobiology, 2016. 41: p. 136-148.
    12. Maglioni, S., N. Arsalan, and N. Ventura, C. elegans screening strategies to identify pro-longevity interventions. Mechanisms of Ageing and Development, 2016. 157: p. 60-69.
    13. Kurz, C.L. and J.J. Ewbank, Caenorhabditis elegans for the study of host–pathogen interactions. Trends in microbiology, 2000. 8(3): p. 142-144.
    14. Alegado, R.A., et al., Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host–pathogen model. Cellular microbiology, 2003. 5(7): p. 435-444.
    15. Irazoqui, J.E., J.M. Urbach, and F.M. Ausubel, Evolution of host innate defence: insights from C. elegans and primitive invertebrates. Nature reviews. Immunology, 2010. 10(1): p. 47.
    16. Chou, T.C., et al., Enterohaemorrhagic Escherichia coli O157: H7 Shiga‐like toxin 1 is required for full pathogenicity and activation of the p38 mitogen‐activated protein kinase pathway in Caenorhabditis elegans. Cellular microbiology, 2013. 15(1): p. 82-97.
    17. MacQueen, A., et al., ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Molecular biology of the cell, 2005. 16(7): p. 3247-3259.
    18. 劉邦渝. 全基因體分析線蟲對細菌致病因子的宿主反應. 2013.
    19. Chen, Y.-T. Analysis of the role of the host factor CYB-3 in the enterohemorrhagic E. coli-induced ACT-5 ectopic expression in C. elegans. 2016.
    20. Sönnichsen, B., et al., Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature, 2005. 434(7032): p. 462-469.
    21. Satyanarayana, A. and P. Kaldis, Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene, 2009. 28(33): p. 2925-2939.
    22. van der Voet, M., et al., C. elegans mitotic cyclins have distinct as well as overlapping functions in chromosome segregation. Cell Cycle, 2009. 8(24): p. 4091-4102.
    23. Suryadinata, R., M. Sadowski, and B. Sarcevic, Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Bioscience Reports, 2010. 30(4): p. 243-255.
    24. Matsushime, H., et al., Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell, 1992. 71(2): p. 323-334.
    25. Meyerson, M. and E. Harlow, Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Molecular and cellular biology, 1994. 14(3): p. 2077-2086.
    26. Endicott, J.A., M.E. Noble, and J.A. Tucker, Cyclin-dependent kinases: inhibition and substrate recognition. Current opinion in structural biology, 1999. 9(6): p. 738-744.
    27. Grana, X. and E.P. Reddy, Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene, 1995. 11(2): p. 211-220.
    28. Pagano, M., G. Draetta, and P. Jansen-Durr, Association of cdk2 kinase with the transcription factor E2F during S phase. Science, 1992. 255(5048): p. 1144.
    29. Tsai, L.-H., E. Harlow, and M. Meyerson, Isolation of the human cdk2 gene that encodes the cyclin A-and adenovirus E1A-associated p33 kinase. Nature, 1991. 353(6340): p. 174.
    30. Draetta, G. and D. Beach, Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell, 1988. 54(1): p. 17-26.
    31. Sambuy, Y., et al., The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell biology and toxicology, 2005. 21(1): p. 1-26.
    32. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
    33. Hayashi, T., et al., Complete genome sequence of enterohemorrhagic Eschelichia coli O157: H7 and genomic comparison with a laboratory strain K-12. DNA research, 2001. 8(1): p. 11-22.
    34. Strockbine, N.A., et al., Two toxin-converting phages from Escherichia coli O157: H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infection and immunity, 1986. 53(1): p. 135-140.
    35. Thomason, L.C., et al., Recombineering: genetic engineering in bacteria using homologous recombination. Current protocols in molecular biology, 2007: p. 1.16. 1-1.16. 39.
    36. Pignata, S., et al., The enterocyte-like differentiation of the Caco-2 tumor cell line strongly correlates with responsiveness to cAMP and activation of kinase A pathway. Cell growth & differentiation: the molecular biology journal of the American Association for Cancer Research, 1994. 5(9): p. 967-973.
    37. Lai, Y., et al., Calpain mediates epithelial cell microvillar effacement by enterohemorrhagic Escherichia coli. Frontiers in microbiology, 2011. 2.
    38. Zarrilli, R., et al., Cell cycle block at G 1-S or G 2-M phase correlates with differentiation of Caco-2 cells: Effect of constitutive insulin-like growth factor II expression. Gastroenterology, 1999. 116(6): p. 1358-1366.
    39. Cardarelli, F., et al., The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Scientific reports, 2016. 6: p. 25879.
    40. Bennett, K.M., S.L. Walker, and D.D. Lo, Epithelial microvilli establish an electrostatic barrier to microbial adhesion. Infection and immunity, 2014. 82(7): p. 2860-2871.
    41. Julio, G., et al., Image processing techniques to quantify microprojections on outer corneal epithelial cells. Journal of anatomy, 2008. 212(6): p. 879-886.
    42. Battle, S.E., et al., Actin pedestal formation by enterohemorrhagic Escherichia coli enhances bacterial host cell attachment and concomitant type III translocation. Infection and immunity, 2014. 82(9): p. 3713-3722.
    43. Bischof, L.J., D.L. Huffman, and R.V. Aroian, Assays for toxicity studies in C. elegans with Bt crystal proteins. C. elegans: Methods and Applications, 2006: p. 139-154.
    44. Lake, R., J.A. Goidl, and N. Salzman, F1-histone modification at metaphase in Chinese hamster cells. Experimental cell research, 1972. 73(1): p. 113-121.
    45. Hohmann, P., R.A. Tobey, and L.R. Gurley, Cell-cycle-dependent phosphorylation of serine and threonine in Chinese hamster cell Fl histones. Biochemical and biophysical research communications, 1975. 63(1): p. 126-133.
    46. Paulson, J. and S. Taylor, Phosphorylation of histones 1 and 3 and nonhistone high mobility group 14 by an endogenous kinase in HeLa metaphase chromosomes. Journal of Biological Chemistry, 1982. 257(11): p. 6064-6072.
    47. Wei, Y., et al., Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proceedings of the National Academy of Sciences, 1998. 95(13): p. 7480-7484.
    48. Nguyen, T.B., et al., Characterization and expression of mammalian cyclin b3, a prepachytene meiotic cyclin. Journal of Biological Chemistry, 2002. 277(44): p. 41960-41969.
    49. 謝孟哲, 端粒酶RNA分子缺失增強惡性腫瘤細胞遷移. 2016.
    50. Boxem, M., Cyclin-dependent kinases in C. elegans. Cell division, 2006. 1(1): p. 6.
    51. Lewis, C.W., et al., A western blot assay to measure cyclin dependent kinase activity in cells or in vitro without the use of radioisotopes. FEBS letters, 2013. 587(18): p. 3089-3095.

    無法下載圖示 校內:2022-08-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE