簡易檢索 / 詳目顯示

研究生: 許秉豐
Hsu, Ping-Feng
論文名稱: 希夫鹼修飾之芘衍生物的合成及其金屬離子螢光感測特性
A novel pyrene-Schiff base fluorescent ‘turn on’ sensor toward Zn2+ and Al3+ with aggregation-induced emission enhancement
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 56
中文關鍵詞: 螢光感測器希夫鹼光誘導電子轉移凝集誘導發光
外文關鍵詞: fluorescent sensor, pyrene, Schiff base, photoinduced electron transfer, aggregation-induced emission enhancement
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成出以希夫鹼修飾之芘衍生物(PySb)作為金屬離子螢光感測器,此PySb在光誘導電子轉移(photoinduced electron transfer, PET)的作用下,螢光強度非常低。當PySb溶於乙醇溶液中時,加入鋅離子可抑制光誘導電子轉移的發生進而促使螢光增強(λem = 470 nm)。而在二甲基亞碸溶液中,則換成加入鋁離子可抑制光誘導電子轉移的發生進而促使螢光增強(λem = 458 nm)。由核磁共振儀之鑑定亦證實PySb分別與鋅、鋁離子形成錯合物。此外,PySb與鋅離子之螯合比(1:2)、結合常數(2×109 M-1)、偵測極限(2.39×10-8 M) 分別由Job plot和滴定實驗測得。當PySb與鋅離子溶於二甲基甲醯胺中時,增加乙醇的含量可誘發凝集誘導螢光增強效應(aggregation-induced emission enhancement),使得螢光強度更進一步的增強。PySb在pH = 3至pH = 11的溶液中皆可有效的作為金屬離子螢光感測器,而在pH = 12 之溶液中則因分子內電荷轉移(intramolecular charge transfer)之機制放出綠光(λem = 515 nm)。

    A novel fluorescent sensor PySb comprising of pyrene moiety as the fluorophore, benzene ring as the spacer, and 2-(hydroxymethyl)propane-1,3-diol as the ionophore was synthesized. PySb itself exhibited weak fluorescence due to photoinduced electron transfer (PET). It can serve as a highly selective and sensitive fluorescent ‘turn on’ sensor toward (a) Zn2+ in ethanol solution (λem = 470 nm) and (b) Al3+ in DMSO solution (λem = 458 nm). The complexes of PySb-Zn2+ and PySb-Al3+ were further supported by 1H NMR spectra. The 1:2 stoichiometry between PySb and Zn2+ was obtained from Job plot. Excellent detection limit toward Zn2+ (2.39×10-8 M) was derived from titration experiment. Similarly, the binding constant toward Zn2+ was estimated as 2×109 M-1 based on titration experiment. PySb-Zn2+ complex in DMF solution showed aggregation-induced emission enhancement with increasing content of ethanol (0-99%). It could be utilized as a fluorescent sensor in a wide range of pH (3-11). Green emission of PySb (λem = 515 nm) was observed when pH was higher than 12 due to intramolecular charge transfer (ICT).

    Table of contents 摘要 I Abstract II 致謝 III Table of contents IV List of scheme VI List of tables VI List of figures VI Chapter 1 1 Introduction 1 1-1 Introduction to fluorescent sensor 1 1-2 Photoinduced electron transfer (PET) 2 1-2-1 Mechanism [15] 2 1-2-2 PET sensors 3 1-3 Introduction to Schiff base 5 1-4 Progress of PET sensors based on Schiff base moieties 6 1-5 Research motivation 7 Chapter 2 8 Theoretical background 8 2-1 Theory of photoluminescence[43-45] 8 2-1-1 Pauli exclusion principle 8 2-1-2 Photoluminescence energy level 9 2-1-3 Deactivation processes 10 2-1-3-1 Vibration relaxation 10 2-1-3-2 Internal conversion 10 2-1-3-3 External conversion 10 2-1-3-4 Intersystem conversion 11 2-1-3-5 Fluorescence and phosphorescence 11 2-2 Aggregation-induced emission (AIE) [46] 12 2-3 Suzuki reaction [59] 15 Chapter 3 16 Experimental Section 16 3-1 Instruments of Chemical Synthesis 16 3-2 Measurements 17 3-3 Preparation of Metal Ion Solutions and Titration 18 3-4 Materials 18 3-5 Synthetic Scheme of fluorescent sensor PySb 20 3-6 Synthesis of fluorescent sensor PySb 21 5,5'-(pyrene-2,7-diyl)bis(2-hydroxybenzaldehyde) (1) 21 2,2'-((1E,1'E)-((pyrene-2,7-diylbis(2-hydroxy-5,1-phenylene))bis(methanylylidene))bis(azanylylidene))bis(2-(hydroxymethyl)propane-1,3-diol) (PySb) 21 Chapter 4 22 Results and discussion 22 4-1 Synthesis and Characterization 22 4-1-1 1H NMR of PySb 22 4-1-2 Mass spectra of PySb 23 4-1-3 Elemental Analysis and yields 23 4-2 Optical Properties in ethanol solution 26 4-2-1 UV-Vis spectra 26 4-2-2 Fluorescence spectra 27 4-2-3 Time dependency 29 4-2-4 Job plot 30 4-2-5 Titration experiment 31 4-2-6 Binding Constant 32 4-2-7 Detection limit 33 4-2-8 Competition effect from other metal ions 34 4-2-9 Aggregation-induced emission enhancement (AIEE) 35 4-2-10 Influence of pH 38 4-3 1H NMR of PySb-Zn2+ complex 41 4-4 Optical properties in DMSO solution 42 4-4-1 UV-Vis spectra 42 4-4-2 Fluorescence spectra 43 4-4-3 Titration experiment 44 4-4-4 Competition effect from other metal ions 46 4-5 1H NMR of PySb-Al3+ complex 47 Chapter 5 48 Conclusion 48 References 49 List of scheme Scheme 3-5-1. Synthetic procedures of PySb. 20 List of tables Table 2-1-1. Rates of absorption and emission. 9 Table 4-1-1. Elemental analysis and reaction yields of PySb and compound 1. 23 List of figures Figure 1-2-1. Structure and mechanism of PET sensors. 2 Figure 1-2-2. Examples of PET sensors. 4 Figure 1-3-1. General structure of Schiff base. 5 Figure 1-3-2. Structure of Salen ligand. 5 Figure 1-3-3. enol-keto tautomerism of Schiff base. 5 Figure 1-4-1. Examples of PET sensors based on Schiff base moieties. 6 Figure 2-1-1. The electron spins of the ground state and excited states. 8 Figure 2-1-2. The energy-level diagram for a typical photoluminescent molecule. 9 Figure 2-1-3. Deactivation processes. 10 Figure 2-2-1. Structure of hexaphenylsilole (HPS). 13 Figure 2-2-2. Examples that utilized AIE effect. 14 Figure 2-3-1. Mechanism of Suzuki reaction. 15 Figure 3-2-1. Four types of absorption transition. 17 Figure 4-1-1. 1H NMR spectrum of compound 1. 24 Figure 4-1-2. 1H NMR spectrum of PySb. 24 Figure 4-1-3. Mass spectra of PySb. 25 Figure 4-1-4. Isotope pattern of PySb. 25 Figure 4-2-1. UV-Vis spectra of PySb (10-5 M) with various metal ions (2×10-4 M) in HEPES buffer solution (Ethanol/H2O = 9/1, v/v). 26 Figure 4-2-2. PET mechanism of PySb. 27 Figure 4-2-3. Fluorescence spectra of PySb (10-5 M) with various metal ions (2×10-4 M) in HEPES buffer solutions (Ethanol/H2O = 9/1, v/v), λex = 309 nm. 28 Figure 4-2-4. Photograph of PySb (10-5 M) with various metal ions (2×10-4 M) in HEPES buffer solutions (Ethanol/H2O = 9/1, v/v) under UV-light. 28 Figure 4-2-5. Fluorescence spectra of PySb (0.5×10-5 M) with Zn2+ (9.5×10-5 M) in ethanol, λex = 309 nm. 29 Figure 4-2-6. Job plot of PySb and Zn2+ in in HEPES buffer solutions (Ethanol/H2O = 9/1, v/v). The total concentration of PySb and Zn2+ was 10-5 M (λex = 309 nm, λem = 470 nm). 30 Figure 4-2-7. Fluorescence spectra of PySb (10-5 M) with increasing amount of Zn2+ in HEPES buffer solutions (Ethanol/H2O = 9/1, v/v), (λex = 309 nm, λem = 470 nm). 31 Figure 4-2-8. Benesi–Hildebrand plot of PySb, assuming 1:2 stoichiometry for association between PySb and Zn2+ in HEPES buffer solutions (Ethanol/H2O = 9/1, v/v). 32 Figure 4-2-9. Detection limit of PySb (10-5 M) toward Zn2+ in HEPES buffer solutions (Ethanol/H2O = 9/1, v/v). 33 Figure 4-2-10. Fluorescence spectra of PySb (10-5 M) with various metal ions (2×10-5 M) in HEPES buffer solutions (Ethanol/H2O = 9/1, v/v), λex = 309 nm. 34 Figure 4-2-11. Fluorescence spectra of PySb (10-5 M) with Zn2+ (2×10-4 M) in different DMF/ethanol ratio solutions (λex = 324 nm, λem =470 nm). 36 Figure 4-2-12. UV-Vis spectra of PySb (10-5 M) with Zn2+ metal ion (2×10-4 M) in DMSO and ethanol solutions. 37 Figure 4-2-13. Fluorescence spectra of PySb (10-5 M) in different pH solutions (Ethanol/H2O = 9/1, v/v), λex = 309 nm. 39 Figure 4-2-14. Formation of phenolate at high pH. 39 Figure 4-2-15. Fluorescence spectra of PySb (10-5 M) with Zn2+ (2×10-4 M) in different pH solutions (Ethanol/H2O = 9/1, v/v), λex = 309 nm. 40 Figure 4-2-16. Photograph of PySb (10-5 M) with Zn2+ (2×10-4 M) in different pH solutions (left: pH = 7.0, right: pH = 12.0) under UV-light. 40 Figure 4-2-17. Competition between PET and ICT mechanisms. 40 Figure 4-3-1. 1H NMR of free PySb (bottom), PySb +Zn2+ (middle), and PySb+Zn2++D2O (upper). 41 Figure 4-4-1. UV-Vis spectra of PySb (10-5 M) with Zn2+ and Al3+ metal ions (2×10-4 M) in HEPES buffer solution (DMSO/H2O = 9/1, v/v). 42 Figure 4-4-2. Fluorescence spectra of PySb (10-5 M) with various metal ions (2×10-4 M) in HEPES buffer solutions (DMSO/H2O = 9/1, v/v), λex = 309 nm. 43 Figure 4-4-3. Fluorescence spectra of PySb (10-5 M) with increasing amount of Al3+ in HEPES buffer solutions (DMSO/H2O = 9/1, v/v), (λex = 309 nm, λem = 458 nm). 45 Figure 4-4-4. Fluorescence spectra of PySb (10-5 M) with various metal ions (2×10-5 M) in HEPES buffer solutions (DMSO/H2O = 9/1, v/v), λex = 309 nm. 46 Figure 4-5-1. 1H NMR of free PySb (bottom), PySb +Al3+ (middle), and PySb+ Al3++D2O (upper). 47

    1. Outten, C.E., D.A. Tobin, J.E. Penner-Hahn, and T.V. O'Halloran, Characterization of the Metal Receptor Sites in Escherichia coli Zur, an Ultrasensitive Zinc(II) Metalloregulatory Protein. Biochemistry, 2001. 40(35): p. 10417-10423.
    2. Finney, L.A. and T.V. O'Halloran, Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors. Science, 2003. 300(5621): p. 931-936.
    3. Frederickson, C.J., Neurobiology of Zinc and Zinc-Containing Neurons, in International Review of Neurobiology, R.S. John and J.B. Ronald, Editors. 1989, Academic Press. p. 145-238.
    4. Zalewski, P.D., S.H. Millard, I.J. Forbes, O. Kapaniris, A. Slavotinek, W.H. Betts, A.D. Ward, S.F. Lincoln, and I. Mahadevan, Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. Journal of Histochemistry & Cytochemistry, 1994. 42(7): p. 877-884.
    5. Kikuchi, K., K. Komatsu, and T. Nagano, Zinc sensing for cellular application. Current Opinion in Chemical Biology, 2004. 8(2): p. 182-191.
    6. Bush, A.I., The metallobiology of Alzheimer's disease. Trends in Neurosciences, 2003. 26(4): p. 207-214.
    7. Truong-Tran, A.Q., J. Carter, R.E. Ruffin, and P.D. Zalewski, The role of zinc in caspase activation and apoptotic cell death. Biometals, 2001. 14(3): p. 315-330.
    8. Álvarez, E., M.L. Fernández-Marcos, C. Monterroso, and M.J. Fernández-Sanjurjo, Application of aluminum toxicity indices to soils under various forest species. Forest Ecology and Management, 2005. 211(3): p. 227-239.
    9. Panda, S.K., F. Baluska, and H. Matsumoto, Aluminum stress signaling in plants. Plant Signaling & Behavior, 2009. 4(7): p. 592-597.
    10. Walton, J.R., An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. Journal of Inorganic Biochemistry, 2007. 101(9): p. 1275-1284.
    11. Fasman, G.D., Aluminum and Alzheimer's disease: model studies. Coordination Chemistry Reviews, 1996. 149: p. 125-165.
    12. Perl, D., D. Gajdusek, R. Garruto, R. Yanagihara, and C. Gibbs, Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam. Science, 1982. 217(4564): p. 1053-1055.
    13. de Silva, A.P., H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, and T.E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 1997. 97(5): p. 1515-1566.
    14. Wu, J., W. Liu, J. Ge, H. Zhang, and P. Wang, New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev, 2011. 40(7): p. 3483-95.
    15. de Silva, A.P., T.S. Moody, and G.D. Wright, Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst, 2009. 134(12): p. 2385-93.
    16. Ji, H.F., R. Dabestani, G.M. Brownxy, and R.L. Hettich, Spacer Length Effect on the Photoinduced Electron Transfer Fluorescent Probe for Alkali Metal Ions. Photochemistry and Photobiology, 1999. 69(5): p. 513-516.
    17. de Silva, S.A., A. Zavaleta, D.E. Baron, O. Allam, E.V. Isidor, N. Kashimura, and J.M. Percarpio, A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switch. Tetrahedron Letters, 1997. 38(13): p. 2237-2240.
    18. de Silva, A.P. and H.Q.N. Gunaratne, Fluorescent PET (photoinduced electron transfer) sensors selective for submicromolar calcium with quantitatively predictable spectral and ion-binding properties. Journal of the Chemical Society, Chemical Communications, 1990(2): p. 186.
    19. Gunnlaugsson, T., T.C. Lee, and R. Parkesh, A highly selective and sensitive fluorescent PET (photoinduced electron transfer) chemosensor for Zn(ii). Organic & Biomolecular Chemistry, 2003. 1(19): p. 3265.
    20. Lu, Y., S. Huang, Y. Liu, S. He, L. Zhao, and X. Zeng, Highly selective and sensitive fluorescent turn-on chemosensor for Al3+ based on a novel photoinduced electron transfer approach. Org Lett, 2011. 13(19): p. 5274-7.
    21. Gunnlaugsson, T., B. Bichell, and C. Nolan, A novel fluorescent photoinduced electron transfer (PET) sensor for lithium. Tetrahedron Letters, 2002. 43(28): p. 4989-4992.
    22. Ko, K.C., J.S. Wu, H.J. Kim, P.S. Kwon, J.W. Kim, R.A. Bartsch, J.Y. Lee, and J.S. Kim, Rationally designed fluorescence 'turn-on' sensor for Cu2+. Chem Commun (Camb), 2011. 47(11): p. 3165-7.
    23. Hobday, M.D. and T.D. Smith, N,N'-ethylenebis(salicylideneiminato) transition metal ion chelates. Coordination Chemistry Reviews, 1973. 9(3): p. 311-337.
    24. Riley, D.P., D.H. Busch, D.E. Fenton, and R.L. Lintvedt, Macrocyclic Tetraazatetraenato Ligands and their Metal Complexes, in Inorganic Syntheses. 2007, John Wiley & Sons, Inc. p. 36-44.
    25. Cozzi, P.G., Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev, 2004. 33(7): p. 410-21.
    26. Amimoto, K. and T. Kawato, Photochromism of organic compounds in the crystal state. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005. 6(4): p. 207-226.
    27. Hernández-Molina, R. and A. Mederos, 1.19 - Acyclic and Macrocyclic Schiff Base Ligands A2 - McCleverty, Jon A, in Comprehensive Coordination Chemistry II, T.J. Meyer, Editor. 2003, Pergamon: Oxford. p. 411-446.
    28. Zhou, Y., Z.-X. Li, S.-Q. Zang, Y.-Y. Zhu, H.-Y. Zhang, H.-W. Hou, and T.C.W. Mak, A Novel Sensitive Turn-on Fluorescent Zn2+ Chemosensor Based on an Easy To Prepare C3-Symmetric Schiff-Base Derivative in 100% Aqueous Solution. Organic Letters, 2012. 14(5): p. 1214-1217.
    29. Hsieh, W.H., C.-F. Wan, D.-J. Liao, and A.-T. Wu, A turn-on Schiff base fluorescence sensor for zinc ion. Tetrahedron Letters, 2012. 53(44): p. 5848-5851.
    30. Yan, M.-h., T.-r. Li, and Z.-y. Yang, A novel coumarin Schiff-base as a Zn(II) ion fluorescent sensor. Inorganic Chemistry Communications, 2011. 14(3): p. 463-465.
    31. Lee, S.A., G.R. You, Y.W. Choi, H.Y. Jo, A.R. Kim, I. Noh, S.J. Kim, Y. Kim, and C. Kim, A new multifunctional Schiff base as a fluorescence sensor for Al(3)(+) and a colorimetric sensor for CN(-) in aqueous media: an application to bioimaging. Dalton Trans, 2014. 43(18): p. 6650-9.
    32. Gupta, V.K., A.K. Singh, and L.K. Kumawat, Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sensors and Actuators B: Chemical, 2014. 195: p. 98-108.
    33. Chen, C.H., D.J. Liao, C.F. Wan, and A.T. Wu, A turn-on and reversible Schiff base fluorescence sensor for Al3+ ion. Analyst, 2013. 138(9): p. 2527-30.
    34. Lin, W., L. Yuan, and J. Feng, A Dual-Channel Fluorescence-Enhanced Sensor for Aluminum Ions Based on Photoinduced Electron Transfer and Excimer Formation. European Journal of Organic Chemistry, 2008. 2008(22): p. 3821-3825.
    35. Ma, T.H., M. Dong, Y.M. Dong, Y.W. Wang, and Y. Peng, A unique water-tuning dual-channel fluorescence-enhanced sensor for aluminum ions based on a hybrid ligand from a 1,1'-binaphthyl scaffold and an amino acid. Chemistry, 2010. 16(34): p. 10313-8.
    36. Guo, Z., G.-H. Kim, I. Shin, and J. Yoon, A cyanine-based fluorescent sensor for detecting endogenous zinc ions in live cells and organisms. Biomaterials, 2012. 33(31): p. 7818-7827.
    37. Kwon, J.E., S. Lee, Y. You, K.-H. Baek, K. Ohkubo, J. Cho, S. Fukuzumi, I. Shin, S.Y. Park, and W. Nam, Fluorescent Zinc Sensor with Minimized Proton-Induced Interferences: Photophysical Mechanism for Fluorescence Turn-On Response and Detection of Endogenous Free Zinc Ions. Inorganic Chemistry, 2012. 51(16): p. 8760-8774.
    38. Mistri, T., M. Dolai, D. Chakraborty, A.R. Khuda-Bukhsh, K.K. Das, and M. Ali, A highly selective and sensitive in vivo fluorosensor for zinc(II) without cytotoxicity. Org Biomol Chem, 2012. 10(12): p. 2380-4.
    39. Anand, T., G. Sivaraman, A. Mahesh, and D. Chellappa, Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging. Analytica Chimica Acta, 2015. 853: p. 596-601.
    40. Komatsu, K., K. Kikuchi, H. Kojima, Y. Urano, and T. Nagano, Selective Zinc Sensor Molecules with Various Affinities for Zn2+, Revealing Dynamics and Regional Distribution of Synaptically Released Zn2+ in Hippocampal Slices. Journal of the American Chemical Society, 2005. 127(29): p. 10197-10204.
    41. Liu, Z., Y. Li, Y. Ding, Z. Yang, B. Wang, Y. Li, T. Li, W. Luo, W. Zhu, J. Xie, and C. Wang, Water-soluble and highly selective fluorescent sensor from naphthol aldehyde-tris derivate for aluminum ion detection. Sensors and Actuators B: Chemical, 2014. 197: p. 200-205.
    42. Sinha, S., T. Mukherjee, J. Mathew, S.K. Mukhopadhyay, and S. Ghosh, Green-emissive molecular marker with a TRIS-scaffold for fluorescence imaging of Zn2+ in biological systems. Journal of Photochemistry and Photobiology A: Chemistry, 2014. 277: p. 75-81.
    43. Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of instrumental analysis. 2007, Australia: Brooks/Cole : Thomson Learning.
    44. Harris, D.C. and M.D. Bertolucci, Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy. 1978: Oxford University Press.
    45. Krane, K.S., Introductory Nuclear Physics. 1987: Wiley.
    46. Mei, J., N.L. Leung, R.T. Kwok, J.W. Lam, and B.Z. Tang, Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev, 2015. 115(21): p. 11718-940.
    47. Saigusa, H. and E.C. Lim, Excimer Formation in van der Waals Dimers and Clusters of Aromatic Molecules. Accounts of Chemical Research, 1996. 29(4): p. 171-178.
    48. Lee, Y.-T., C.-L. Chiang, and C.-T. Chen, Solid-state highly fluorescent diphenylaminospirobifluorenylfumaronitrile red emitters for non-doped organic light-emitting diodes. Chemical Communications, 2008(2): p. 217-219.
    49. Wu, C.-W., C.-M. Tsai, and H.-C. Lin, Synthesis and Characterization of Poly(fluorene)-Based Copolymers Containing Various 1,3,4-Oxadiazole Dendritic Pendants. Macromolecules, 2006. 39(13): p. 4298-4305.
    50. Setayesh, S., A.C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E.J.W. List, and G. Leising, Polyfluorenes with Polyphenylene Dendron Side Chains:  Toward Non-Aggregating, Light-Emitting Polymers. Journal of the American Chemical Society, 2001. 123(5): p. 946-953.
    51. Yang, J.-S. and J.-L. Yan, Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chemical Communications, 2008(13): p. 1501-1512.
    52. Makhseed, S., M. Machacek, W. Alfadly, A. Tuhl, M. Vinodh, T. Simunek, V. Novakova, P. Kubat, E. Rudolf, and P. Zimcik, Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chemical Communications, 2013. 49(95): p. 11149-11151.
    53. de Souza, J.M., F.F. de Assis, C.M.B. Carvalho, J.A.S. Cavaleiro, T.J. Brocksom, and K.T. de Oliveira, Synthesis of non-aggregating chlorins and isobacteriochlorins from meso-tetrakis(pentafluorophenyl)porphyrin: a study using 1,3-dipolar cycloadditions under mild conditions. Tetrahedron Letters, 2014. 55(8): p. 1491-1495.
    54. Luo, J., Z. Xie, J.W.Y. Lam, L. Cheng, B.Z. Tang, H. Chen, C. Qiu, H.S. Kwok, X. Zhan, Y. Liu, and D. Zhu, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001(18): p. 1740-1741.
    55. Zhao, Z., S. Chen, J.W. Lam, P. Lu, Y. Zhong, K.S. Wong, H.S. Kwok, and B.Z. Tang, Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chem Commun (Camb), 2010. 46(13): p. 2221-3.
    56. Zhao, Z., S. Chen, C.Y. Chan, J.W. Lam, C.K. Jim, P. Lu, Z. Chang, H.S. Kwok, H. Qiu, and B.Z. Tang, A facile and versatile approach to efficient luminescent materials for applications in organic light-emitting diodes. Chem Asian J, 2012. 7(3): p. 484-8.
    57. Singh, A., R. Singh, M. Shellaiah, E.C. Prakash, H.-C. Chang, P. Raghunath, M.-C. Lin, and H.-C. Lin, A new pyrene-based aggregation induced ratiometric emission probe for selective detections of trivalent metal ions and its living cell application. Sensors and Actuators B: Chemical, 2015. 207, Part A: p. 338-345.
    58. Kathiravan, A., K. Sundaravel, M. Jaccob, G. Dhinagaran, A. Rameshkumar, D. Arul Ananth, and T. Sivasudha, Pyrene Schiff base: photophysics, aggregation induced emission, and antimicrobial properties. J Phys Chem B, 2014. 118(47): p. 13573-81.
    59. Suzuki, A., Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. Journal of Organometallic Chemistry, 1999. 576(1–2): p. 147-168.
    60. Qiao, Y., J. Zhang, W. Xu, and D. Zhu, Novel 2,7-substituted pyrene derivatives: syntheses, solid-state structures, and properties. Tetrahedron, 2011. 67(19): p. 3395-3405.
    61. Ding, W.H., W. Cao, X.J. Zheng, W.J. Ding, J.P. Qiao, and L.P. Jin, A tetrazole-based fluorescence "turn-on" sensor for Al(III) and Zn(II) ions and its application in bioimaging. Dalton Trans, 2014. 43(17): p. 6429-35.
    62. Choi, Y.W., G.J. Park, Y.J. Na, H.Y. Jo, S.A. Lee, G.R. You, and C. Kim, A single Schiff base molecule for recognizing multiple metal ions: A fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III). Sensors and Actuators B: Chemical, 2014. 194: p. 343-352.
    63. Varghese, R., S.J. George, and A. Ajayaghosh, Anion induced modulation of self-assembly and optical properties in urea end-capped oligo(p-phenylenevinylene)s. Chemical Communications, 2005(5): p. 593-595.
    64. Dalapati, S., M.A. Alam, S. Jana, and N. Guchhait, Naked-eye detection of F− and AcO− ions by Schiff base receptor. Journal of Fluorine Chemistry, 2011. 132(8): p. 536-540.
    65. Erdemir, S., O. Kocyigit, and S. Malkondu, Fluorogenic Recognition of Zn2+, Al3+ and F− Ions by a New Multi-Analyte Chemosensor Based Bisphenol A-Quinoline. Journal of Fluorescence, 2015. 25(3): p. 719-727.
    66. Deranleau, D.A., Theory of the measurement of weak molecular complexes. II. Consequences of multiple equilibria. Journal of the American Chemical Society, 1969. 91(15): p. 4050-4054.
    67. Shellaiah, M., Y.H. Wu, and H.C. Lin, Simple pyridyl-salicylimine-based fluorescence "turn-on" sensors for distinct detections of Zn2+, Al3+ and OH- ions in mixed aqueous media. Analyst, 2013. 138(10): p. 2931-42.
    68. Chen, C., R. Wang, L. Guo, N. Fu, H. Dong, and Y. Yuan, A Squaraine-Based Colorimetric and “Turn on” Fluorescent Sensor for Selective Detection of Hg2+ in an Aqueous Medium. Organic Letters, 2011. 13(5): p. 1162-1165.
    69. Li, W., X. Tian, B. Huang, H. Li, X. Zhao, S. Gao, J. Zheng, X. Zhang, H. Zhou, Y. Tian, and J. Wu, Triphenylamine-based Schiff bases as the High sensitive Al3+ or Zn2+ fluorescence turn-on probe: Mechanism and application in vitro and in vivo. Biosensors and Bioelectronics, 2016. 77: p. 530-536.
    70. Kumar, Y.P., P. King, and V.S.R.K. Prasad, Zinc biosorption on Tectona grandis L.f. leaves biomass: Equilibrium and kinetic studies. Chemical Engineering Journal, 2006. 124(1–3): p. 63-70.
    71. Hung, C.-H., G.-F. Chang, A. Kumar, G.-F. Lin, L.-Y. Luo, W.-M. Ching, and E. Wei-Guang Diau, m-Benziporphodimethene: a new porphyrin analogue fluorescence zinc(ii) sensor. Chemical Communications, 2008(8): p. 978-980.
    72. Chen, H., W. Gao, M. Zhu, H. Gao, J. Xue, and Y. Li, A highly selective OFF-ON fluorescent sensor for zinc in aqueous solution and living cells. Chemical Communications, 2010. 46(44): p. 8389-8391.
    73. Zhang, T.-T., X.-P. Chen, J.-T. Liu, L.-Z. Zhang, J.-M. Chu, L. Su, and B.-X. Zhao, A high sensitive fluorescence turn-on probe for imaging Zn2+ in aqueous solution and living cells. RSC Advances, 2014. 4(33): p. 16973-16978.
    74. Lee, S., J.H. Lee, T. Pradhan, C.S. Lim, B.R. Cho, S. Bhuniya, S. Kim, and J.S. Kim, Fluorescent turn-on Zn2+ sensing in aqueous and cellular media. Sensors and Actuators B: Chemical, 2011. 160(1): p. 1489-1493.
    75. Tang, B.Z., Y. Geng, J.W.Y. Lam, B. Li, X. Jing, X. Wang, F. Wang, A.B. Pakhomov, and X.X. Zhang, Processible Nanostructured Materials with Electrical Conductivity and Magnetic Susceptibility:  Preparation and Properties of Maghemite/Polyaniline Nanocomposite Films. Chemistry of Materials, 1999. 11(6): p. 1581-1589.
    76. Tong, H., Y. Hong, Y. Dong, M. Haussler, J.W. Lam, Z. Li, Z. Guo, Z. Guo, and B.Z. Tang, Fluorescent "light-up" bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem Commun (Camb), 2006(35): p. 3705-7.
    77. Song, P., X. Chen, Y. Xiang, L. Huang, Z. Zhou, R. Wei, and A. Tong, A ratiometric fluorescent pH probe based on aggregation-induced emission enhancement and its application in live-cell imaging. Journal of Materials Chemistry, 2011. 21(35): p. 13470.
    78. Saha, U.C., K. Dhara, B. Chattopadhyay, S.K. Mandal, S. Mondal, S. Sen, M. Mukherjee, S. van Smaalen, and P. Chattopadhyay, A New Half-Condensed Schiff Base Compound: Highly Selective and Sensitive pH-Responsive Fluorescent Sensor. Organic Letters, 2011. 13(17): p. 4510-4513.
    79. Fan, Y., Y.M. Zhu, F.R. Dai, L.Y. Zhang, and Z.N. Chen, Photophysical and anion sensing properties of platinum(II) terpyridyl complexes with phenolic ethynyl ligands. Dalton Trans, 2007(35): p. 3885-92.
    80. Joshi, H., F.S. Kamounah, C. Gooijer, G. van der Zwan, and L. Antonov, Excited state intramolecular proton transfer in some tautomeric azo dyes and Schiff bases containing an intramolecular hydrogen bond. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 152(1–3): p. 183-191.
    81. Gormin, D. and M. Kasha, Triple fluorescence in aminosalicylates. Modulation of normal, proton-transfer, and twisted intramolecular charge-transfer (TICT) fluorescence by physical and chemical perturbations. Chemical Physics Letters, 1988. 153(6): p. 574-576.
    82. Guo, Z., P. Zhao, W. Zhu, X. Huang, Y. Xie, and H. Tian, Intramolecular Charge-Transfer Process Based on Dicyanomethylene-4H-pyran Derivative:  An Integrated Operation of Half-Subtractor and Comparator. The Journal of Physical Chemistry C, 2008. 112(17): p. 7047-7053.
    83. de Silva, A.P., T. Gunnlaugsson, and T.E. Rice, Recent evolution of luminescent photoinduced electron transfer sensors. A review. The Analyst, 1996. 121(12): p. 1759.

    下載圖示 校內:2017-07-31公開
    校外:2017-07-31公開
    QR CODE