| 研究生: |
莊晏綺 Chuang, Yan-Chi |
|---|---|
| 論文名稱: |
在乳化超臨界二氧化碳流體中界面活性劑對鎳磷電鍍的影響 Effect of Surfactant on Ni-P Electroplating in Emulsified Supercritical CO2 Fluid |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 電鍍 、超臨界二氧化碳 、鎳磷合金 、界面活性劑 、電化學性質 |
| 外文關鍵詞: | Supercritical carbon dioxide, Ni-P alloys, Electrodeposition, Surfactant, Electrochemical properties |
| 相關次數: | 點閱:184 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的是開發於乳化超臨界二氧化碳(sc-CO2)流體中電鍍鎳磷合金的技術,並比較所製備之鍍層與在傳統常壓電鍍所製備的鎳磷合金鍍層性質的差異。鍍液乳化所需添加界面活性劑的種類、添加濃度對電鍍製程及鍍層性質的影響,是重要研究的重點。鍍層經過450℃熱處理一小時後之性質變化,亦是本論文探討之課程之一。鍍層性質之分析採用多種分析方法,包含掃描式電子顯微鏡(SEM)觀察表面形貌、原子力顯微鏡(AFM)量測鍍層粗糙度、X-ray繞射儀(XRD)分析鍍層結晶結構、維氏硬度計量測鍍層硬度值,並且使用恆電位儀(Potentiostat)分析鍍層電化學性質。
本論文中採用之界面活性劑分別為C12EO8、FSN以及EO17PO14,研究結果顯示,常壓下所得鍍層表面具有許多孔洞缺陷,而引入sc-CO2於電鍍系統中並添加界面活性劑,則可得到無孔洞與針孔缺陷且平整的鍍層表面。由於FSN的親二氧化碳端的能力較佳,較容易使sc-CO2與水溶液互溶形成乳化狀態,只需要添加微量的界面活性劑即可使二氧化碳與水形成一均勻的乳化相,使鍍層呈現一平整的表面,而C12EO8與EO17PO14則是需要添加較高濃度才可達到較佳的乳化效果。然而由於sc-CO2造成鍍液pH值下降,使得鍍層析鍍速率變慢且鍍層磷含量下降。
XRD與鍍層硬度值分析結果顯示,以C12EO8為乳化劑的sc-CO2製程可得到結晶性較佳、鍍層硬度值較高且具有良好耐磨耗性質的鎳磷合金鍍層,並且經過450℃熱處理一小時後,常壓與超臨界鍍層都有Ni3P相的析出,更可提升其耐磨耗性且鍍層硬度值可高達949 Hv。
電化學極化曲線量測結果顯示,在1M氫氧化鈉水溶液當中,Ni-P合金鍍層表面會發生鈍化現象。而在1M鹽酸水溶液中,於含有sc-CO2環境中所得鍍層與在常壓下所得鍍層比較,其腐蝕電位較高,而腐蝕電流密度則較低。經過熱處理後,在1M鹽酸水溶液環境中,常壓與sc-CO2流體中析鍍所得的鎳磷合金鍍層的腐蝕電流密度都有下降的趨勢。
The electrodeposition of Ni-P films with the co-existenc of supercritical carbon dioxide (sc-CO2) fluid was investigated. The effects of different types of surfactant and their concentration on the electrodeposition behavior were focused. Material properties of the as-deposited films fabricated in the normal and ambient pressure electrolyte and those from the sc-CO2 bath were analyses and compared. The effect of heat treatment at 450 ℃ for 1 hour on the changes of material properties of the deposited Ni-P coatings was also explored. The techniques employed for material characterization include (1) scanning electron microscopy (SEM) for surface morphology examination, (2) atomic force microscopy (AFM) for surface roughness determination, (3) X-ray diffraction (XRD) for crystal structure analysis, and (4) Vicker’s hardness measurement. The electrochemical behavior of the deposited film was investigated by employing a potentiostat.
The surfactants used in this study were C12EO8, FSN and EO17PO14. The experimental results showed that voids and pinholes were commonly found in the Ni-P film electrodeposited in conventional bath at ambient bath. However, these defects could be eliminated when electrodeposition was conducted in the emulsified sc-CO2 bath with proper addition of surfactant. Due to its better affinity to sc-CO2, only a small amount of FSN addition (0.1 vol. %) was sufficient to emulsify sc-CO2 with aqueous electrolyte and gave rise to a deposit with smooth surface morphology. In contrast, a higher concentration of C12EO8 or EO17PO14 was required to obtained an emulsified bath. In all cases, the low pH of the bath resulting from the presence of sc-CO2 fluid caused a lower deposition rate and a lower phosphorus content in the Ni-P film.
The experimental results from XRD analysis and hardness measurement indicated that a Ni-P film with higher crystallinity, higher hardness and better wear resistance could be obtained by electrodeposition from emulsified sc-CO2 bath with C12EO8 as the surfactant, as compared with that from conventional process. Heat treatment at 450 oC for 1 hour resulted in precipitation of Ni3P in the substrate, which gave rise to a harness as high as 950 Hv and improved the wear resistance.
The potentiodynamic polarization curves showed that Ni-P film could be passivated easily in 1 M NaOH solution, almost independent of the bath used. In 1 M HCl solution, however, the Ni-P film deposited from the emulsified sc-CO2 bath had a higher corrosion potential with a lower corrosion current density as compared with that of conventional deposit. Regardless of the deposition bath, heat treatment led to a reduction of corrosion current density of all the Ni-P films in 1 M HCl solution.
1.H. Yang, J. C. Swihart, D. M. Nicholson, Calculation of The Electronic Properties of Ni-P Amorphous Alloys, Phys. Rev. B, 47, (1993) 107
2.J. J. Tu, Y. F. Lu, Laser-induced Ripple Structures on Ni-P Sunstrates, Appl. Surf. Sci., 148, (1999) 248-252
3.R. N. Duncan, Corrosion Resistance of High Phosphorus Electroless Nickel Coatings, Plat. Surf. Finish., 1986
4.R. Weil, K. Parker, The Properties of Electroless Nickel, Electroless Plating: Fundamentals and Applications, (1991) 111
5.R. P. Tracy, J. Colaruotolo, A. Misercola, B. R. Chuba, ibid, 25 (1986) 21
6.C. R. Shipley, Historical Highlights of Electroless Plating, Plat. Surf. Fin., 71 (1984) 92-99
7.R. P. Tracy, G. T. Shawhan, Practical Guide to Using Ni-P Electroless Nickel Coatings, Mater. Perform., 29 (1990) 65-70
8.G. A. Krulik, Forty Queations & Answers About Electroless Plating for RFI Shieling, Metal Finishing, 82 (1984) 75
9.E. F. Duffek, D. W. Baudrand, Electroless Nickel Applications in Electronics, Fundamentals and Applications, (1991) 229
10.B. K. Singh, R. N. Mitra, Variation of Contact Resistance of Electroless Ni-P on Silicon with the Chang of Phosphorous Concentration in the Deposit, J. Electrochem. Soc., 127 (1980) 2578
11.W. L. Tsai, P. C. Hsu, Building on bubbles in metal electrodeposition, Nature, 417 (2002) 139
12.B. H. Woo, M. Sone, A. Shibata, Metallization on Polymer by Catalyzation in sc-CO2 and Electroless Plating in Dense CO2 Emulsion, Surf. Coat. Tech., 202 (2008) 3921-3926
13.T. F. M. Chang, M. Sone, Function and Mechanism of Supercritical Carbon Dioxide Emulsified Electrolyte in Nickel Electroplating Reaction, Surf. Coat. Tech., 205 (2011) 3890-3899
14.H. Yoshida, M. Sone, New Electroplating Method of Nickel in Emulsion of Supercritical Carbon Dioxide and Electroplating Solution to Enhance Uniformity and Hardness of Plated Film, Thin Solid Films, 446 (2004) 194-199
15.H. Uchiyama, M. Sone, Uniform Ni-P film Using an Electroless Plating Method with an Emulsion of Supercritical Carbon Dioxide, J. Electrochem. Soc., 154 (2007) E91-E94
16.J. R. Williams, A. A. Clifford, Supercritical Fluids and Their Applications in Biotechnology and Related Areas, Molecular Biotechnology, 22 (2002) 263
17.M. S. Kim, C. K. K., Nickel Electroplating on Copper Substrate in Plating Solution Containing High-Density CO2, J. Ind. Eng. Chem., 11 (2005) 876
18.P. Raveendran, Y. Ikushima, Polar Attributes of Supercritical Carbon Dioxide, Acc. Chem. Res., 38 (2005) 478-485
19.S. R. P. da Rocha, P. A. Psathas, Concentrated CO2-in-Water Emulsions with Nonionic Polymeric Surfactant, J. Colloid Interf. Sci., 239 (2001) 241-253
20.J. B. McClain, D. E. Betts, D. A. Canelas, E. T. Samulski, Design of Nonionic Surfactants for Supercritical Carbon Dioxide, Science, 274 (1996) 2049-2052
21.V. V. Dhanuka, J. L. Dickson, W. Ryoo, High Internal Phase CO2-in-Water Emulsions Stabilized with a Branched Nonionic Hydrocarbon Surfactant, J. Colloid Interf. Sci. 298 (2006) 406-418
22.G. McMahon, U. ERB, Structural Transitions in Electroplated Ni-P Alloys, J. Mater. Sci. Lett., 8 (1989) 865-868
23.Sho-ichiro Sakai, S. Nakanishi, Y. Nakato, Mechanisms of oscillations and formation of nano scale layered structures in induced co-deposition of some iron group alloys, J. Phys. Chem. B, 110 (2006) 11944-11949
24.S. S. Djokic, Electrodeposition of Amorphous Alloys Based on the Iron Group of Metals, J. Electrochem. Soc., 146 (1999) 1824-1828
25.R. L. Zeller, U. Landou, Electrodeposition of Ni-P Amorphous Alloys, J. Electrochem. Soc., 139 (1992) 3464-3469
26.B. P. Daly, F. J. Barry, Electrochemical Nickel-Phosphorus Alloy Formation, Inter. Mater. Rev., 48 (2003) 326-338
27.A. P. Ordine, S. L. Diaz, I. C. P. Margarit, O. E. Barcia, Electrochemical study on NiP electrodeposition, Electrochemica Acta, 51 (2006) 1480-1486
28.D. Jacquemain, S. G. Wolf, F. Leveiller, Two-Dimensional Crystallography of Amphiphilic Molecules at the Air-Water Interface, Angew. Chem. Int. Ed. Engl. 31 (1992) 130-152
29.T. Morikawa, T. Nakade, M. Yokoi, Electrodeposition of Ni-P Alloys from Ni-citrate Bath, Electrochemica Acta, 42 (1997) 115-118
30.Mahalingam, M. Raja, S. Thanikarasan, Electrochemical Deposition and Characterization of Ni-P Alloy Thin Films, Materials Characterization, 58 (2007) 800-804
31.T. M. Harris, Q. D. Danh, The Mechanism of Phosphorus Incorporation during the Electrodeposition of Nickel-Phosphorus Alloys, J. Electrochem. Soc., 140 (1993) 81-81
32.T. Clifforo, Fundamentals of Supercritical Fluids, United Kingdom Oxford University Press, (1999)
33.R. C. Reid, J. M. P., B. E. Poling, The Properties of Gases and Liquids, New York, McGraw-Hill, (1986)
34.J. A. Darr, M. Poliakoff, New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercritical Fluids, Chem. Rev., 99 (1999) 495-541
35.L. S. Daintree, A. Kordikowski, P. Tork, Separation processes for organic molecules using SCF Technologies, Advanced Drug Delivery Reviews, 60 (2008) 351-372
36.S. G. Kazarian, Pplymer Processing with Supercritical Fluids-an Overview, Polymer Science, 42 (2000) 78-101
37.B. Subramaniam, R. A. Rajewski, K. Snavely, Pharmaceutical Processing with Supercritical Carbon Dioxide, J. Pharmaceutical Sciences, 86 (1997) 885-890
38.G. L. Weibel, C. K. Ober, An Overview of Supercritical CO2 Applications in Microelectronics Processing, Microeletronic Engineering, 65 (2003) 145-152
39.J. W. King, L. L. Williams, Utilization of Critical Fluids in Processing Semiconductors and Their Related Materials, Current Opinion Solid State and Materials Science, 7 (2003) 413-424
40.K. E. O’Shea, K. M. Kirmse, M. A. Fox, Polar and Hydrogen-Bonding Interactions In Supercritical Fluids. Effects on the Tautomeric Equilibrium of 4-(phenylazo)-1-naphthol, J. Phys. Chem., 95 (1991) 7863-7867
41.S. Saito, Research Activities on Supercritical Fluid Science and Technology in Japan-A Review, The Journal of Supercritical Fluids, 8 (1995) 177-204
42.曹恒光, 連大成, 淺談微乳液,物理雙月刊, 23 (2001) 488-493
43.W. Ryoo, S. E. Webber, K. P. Johnston, Water-in-Carbon Dioxide Microemulsions with Methylated Branched Hydrocarbon Surfactants, Ind. Eng. Chem. Res., 42 (2003) 6348-6358
44.S. Kaneshina, O. Shibata, M. Nakamura, Effect of Pressure on the Clound Point of Nonionic Surfactant Solutions and the Solubilization of Hydrocarbons, Bulletin of the Chemical Society of Japan, 52 (1979) 42-44
45.D. J. Mitchell, Phase Behaviour of Polyoxyethylene Surfactants with Water. Mesophase Structures and Partial Miscibility (Cloud Points), J. Chem. Soc., 79 (1983) 975-1000
46.Y. Einaga, Phase Diagram of Dilute Micelle Solutions of Polyoxyethylene Alkyl Ethers, Polymer Journal, 39 (2007) 1082-1083
47.S. R. P. da Rocha, K. L. Harrison, K. P. Johnston, Effect of Surfactants on the Interfacial Tension and Emulsion Formation between Water and Carbon Dioxide, Langmuir, 15 (1999) 419-428
48.T. Akutsu, Y. Yamaji, H. Yamaguchi, Interfacial Tension Between Water and High Pressure CO2 in the Presence of Hydrocarbon Surfactant, Fluid Phase Equilibria, 257 (2007) 163-168
49.H. Yan, M. Sone, N. Sato, S. Ichihara, The Effects of Dense Carbon Dioxide on Nickel Plating Using Emulsion of Carbon Dioxide in Electroplating Solution, Surf. Coat. Tech., 182 (2004) 329-334
50.H. Yoshida, M. Sone, A. Mizushima, Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution, Chemistry Letters, (2002) 1086-1087
51.H. Yoshida, M. Sone, A. Mizushima, H. Yan, Application of Emulsion of Dense Carbon Dioxide in Electroplating Solution with Nonionic Surfactants for Nickel Electroplating, Surf. Coat. Tech., 173 (2003) 285-292
52.S. T. Chung, H. C. Huang, S. J. Pan, W. T. Tsai, Material Characterization and Corrosion Performance of Nickel Electroplated in Supercritical CO2 Fluid, Corrosion Science, 50 (2008) 2614-2619
53.A. Mizushima, M. Sone, H. Yan, T. Nagai, Nanograin Deposition via an Electroplating Reaction in an Emulsion of Dense Carbon Dioxide in a Nickel Electroplating Solution Using Nonionic Fluorinated Surfactant, Surf. Coat. Tech., 194 (2005) 149-156
54.E. O. Hall, The Deformation and Ageing of Mild Steel:III Discussion of Results, Proc. Phys. Soc., B. 64 (1951) 747-753
55.Thomas H. Courtney, Mechanical Behavior of Materials, New York, McGraw-Hill, 1990 (second edition)
56.M. Z. Rahman, M. Sone, M. Eguchi, Wear Properties of Nickel Coating Film Plated from Emulsion with Dense Carbon Dioxide, Surf. Coat. Tech., 201 (2006) 606-611
57.S. T. Chung, W. T. Tsai, Effect of Pressure on the Electrodeposition of Nanocrystalline Ni-C in Supercritical CO2 Fluid, Thin Solid Films, 518 (2010) 7236-7239
58.K. L. Toews, R. M. Shroll, C. M. Wai, pH-Defining Equilibrium Between Water and Supercritical CO2. Influence on SFE of Organics and Metal Chelates, Anal. Chem., 67 (1995) 4040-4043
59.E. D. Niemeyer, F. V. Bright, The pH within PFPE Reverse Micelles Formed in Supercritical CO2, J. Phys. Chem., 102 (1998) 1474-1478
60.H. Yan, M. Sone, A. Mizushima, T. Nagai, Electroplating in CO2-in-Water and Water-in-CO2 Emulsions Using a Nickel Electroplating Solution with Anionic Fluorinated Surfactant, Surf. Coat. Tech., 187 (2004) 86-92
61.P. Pouderoux, I. Chassaing, J. B. Bonino, Plating of Nickel-Phosphorus Multilayer Alloys Current Pulse Effect on the Microstructural and Mechanical Properties, Surface and Coatings Technology, 45 (1991) 161-170
62.J. P. Bonino, S. Bruet-Hotellaz, C. Bories, P. Pouderoux, Thermal Stability of Electrodeposited Ni-P Alloys, J. Appl. Electroche., 27 (1997) 1193-1197
63.黃憲中, 磷含量對鎳磷電鍍合金顯微組織變化以及硬化機構之影響, 材料科學及工程研究所, 國立成功大學碩士論文, (2008)
64.M. Pourbaix, Altas of Electrochemical Equilibria in Aqueous Solution, National Association of Corrosion Engineering, (1974)
65.J. F. Wolf, L-S. R. Yeh, A. Damjanovic, Anodic Oxide Films at Nickel Electrodes in Alkaline Solutions—I. Kinetics of Growth of the β-Ni(OH)2 Phase, 26 (1981) 409-416
66.J. M. Skowronski, A. Wazny, Nickel Foam based NiOH2 NiOOH Electrode as Catalytic System for Methanol Oxidation in Alkaline Solution, J. New Mater. Electrochem. Sys. 9 (2006) 345-351
67.D. D. N. Singh, R. Ghosh, Electroless Nickel–Phosphorus Coatings to Protect steel Reinforcement Bars from Chloride Induced Corrosion, Surf. Coat. Tech., 201 (2006) 90-101