| 研究生: |
吳祖儀 Wu, Tsu-Yi |
|---|---|
| 論文名稱: |
以液相沉積法在氮化鎵上沉積二氧化鈦之研究 Investigation of TiO2 Oxide on GaN Prepared by Liquid Phase Deposition |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 液相沉積法 、氮化鎵 、二氧化鈦 |
| 外文關鍵詞: | Liquid Phase Deposition (LPD), TiO2, GaN |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,藉由使用液相沉積法我們成功的將二氧化鈦氧化薄膜沉積於氮化鎵材料上,液相沉積法是一種相當便宜又容易使用的氧化層沉積技術,並且可於室溫下使用,沉積的速率約可達到每小時40奈米。為了分析液相沉積法所沉積之二氧化鈦薄膜,我們使用X光譜儀、歐傑電子分析儀、二次離子質譜儀與能量散佈分析儀來分析氧化層的化學組成成分和元素鍵結,掃描電子顯微鏡及原子力顯微鏡則用來觀察薄膜的表面狀態。當我們成長75奈米厚的氧化層時,氧化層漏電流密度可達到10-5A/cm2而電場約為0.2MV/cm,崩潰電場則可以達到1MV/cm以上。在經過高純度氮氣環境下的退火處理後,折射係數可增加至2.24,藉由X光繞射我們觀察到二氧化鈦氧化層由非晶相轉換至銳鈦礦及金紅石相且結晶顆粒增大,表面粗糙度也有所改善,我們也嘗試利用液相沉積法來成長二氧化鈦/二氧化矽雙層結構。在經過400℃退火處理後,二氧化鈦氧化層漏電流密度可達到10-5A/cm2而電場約為1MV/cm,崩潰電場則可以達到2.9MV/cm,在800℃退火處理後,最高的相對介電常數可以達到40.6。
TiO2 oxide has been deposited on GaN material through the liquid phase deposition method (LPD) which provides a low-cost and low-complex method in forming oxide layers at room temperature. The deposition rate is about 40nm/hr. Augar electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), second ion mass spectrometer (SIMS), and energy-dispersive spectrometer (EDS) are used to analyze chemical composition. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are likewise used to observe the surface of the LPD-TiO2 oxide. The leakage current is about 10-5A/cm2 at 0.2MV/cm and the breakdown field is more than 1MV/cm when the oxide thickness is 75nm. Upon annealing under an atmosphere of high purity N2, the refractive index increased significantly. It is observed that the crystal phase of TiO2 transformed from the amorphous to the anatase and rutile phases and the crystal size increased by X-ray diffraction (XRD). Moreover, surface roughness improved significantly after thermal treatment. We also attempted to deposit TiO2/SiO2 stack layer structure by LPD process. It is observed that the leakage current is about 10-5A/cm2 at 1MV/cm electric field and the breakdown field can reach 2.9MV/cm after annealing at 400℃ for 30 minutes. Furthermore, the highest relative dielectric constant is 40.6 after annealing at 800℃.
[1]H. Morkoc, S. STrite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, pp. 1363-1398, 1994.
[2]S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
[3]I. Nomura, K. Kishino, and A. Kikuchi, “Theoretical estimation of threshold current of cubic GaInN/GaN/AlGaN quantum well lasers,” Solid-State Electronics, Vol. 41, pp. 283-286, 1997.
[4]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
[5]T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Elect. Dev., vol. 41, pp. 1481-1483, 1994.
[6]M. A. Kahn, J. N. Kuznia, A. R. Bhattrai, and D. T. Olson, “Metal contacts to gallium nitride,” Appl. Phys. Lett., vol. 62, pp. 2859-2861, 1993.
[7]Y. Uzawa, Z. Wang, A. Osinsky, and B. Komiyama, “Submillimeter wave responses in NbN/AlN/NbN tunnel junctions,” Appl. Phys. Lett., vol. 66, pp. 1992-1994, 1995.
[8]S. J. Pearton, GaN and Related Materials, Gordon and Breach Science Publishers.
[9]Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse, and J. M. Redwing, “High voltage (450 V) GaN schottky rectifiers,” Appl. Phys. Lett., vol. 74, pp. 1266-1268, 1999.
[10]R. Gaska, J. W. Yang, A. Osinsky, Q. chen, M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur, “Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates,” Appl. Phys. Lett., vol. 72, pp. 707-709, 1998.
[11]F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 73, pp. 3893-3895, 1998.
[12]M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J. N. Baillargeon, A. R. Kortan., J. P. Mannaerts, A. Y. Cho, C. M. Lee, J. I. Chyi, and T. S. Lay, “Properties of Ga2O3(Gd2O3)/GaN metal–insulator–semiconductor diodes,” J. Vac. Sci. Technol. B, vol. 18, pp. 1453-1456, 2000.
[13]M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Device Lett., vol. 21, pp. 63-65, 2000.
[14]G. K. Dalapati, S. Chatterjee, S. K. Samanta, S. K. Nandi, P. K. Bose, S. Varma, S. Patil, and C. K. Maiti, “Electrical properties of ultrathin TiO2 films on Si1−yCy heterolayers,” Solid-State Electronics, vol. 47, pp. 1793-1798, 2003.
[15]S. Chatterjee, S. K. Samanta, H. D. Banerjee, and C. K. Maiti, “Effect of the stack layer on the electrical properties of Ta2O5 gate dielectrics deposited on strained-Si0.82Ge0.18 substrates,” Semicond. Sci. Technol., vol. 17, pp. 993-998, 2002.
[16]M. P. Houng, Y. H. Wang, C. J. Huang, S. P. Huang, and J. H. Horng, “Quality optimization of liquid phase deposition SiO2 films on gallium arsenide,” Solid-State Electronics, vol. 44, pp. 1917-1923, 2000.
[17]Ulrike Diebold, “The surface science of titanium dioxide,” Surface Science Reports, vol. 48, pp. 53-229, 2003.
[18]D. G. Howitt and A. B. Harker, “The oriented growth of anatase in thin films of amorphous titania,” J. Mater. Res., vol. 2, pp. 201-210, 1987.
[19]F. Edelman, A. Rothshild, Y. Komem, V. Mikhelashvili, A. Chack, and F. Cosandey, “E-Gun sputtered and reactive ion sputtered TiO2 thin films for gas sensors,” Electron Technology, Vol. 33, pp. 89-107, 1999.
[20]J. D. DeLoach, G. Scarel, and C. R. Aita, “Correlation between titania film structure and near ultraviolet optical absorption,” J. Appl. Phys., vol. 85, pp. 2377-2384, 1999.
[21]H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[22]P. Alexandrov, J. Koprinarova, and D. Todorov, “Dielectric properties of TiO2-films reactively sputtered from Ti in an RF magnetron,” Vacuum, vol. 47, p. 1333, 1996.
[23]J. A. Duffy, Bonding Energy Levels and Bands in Inorganic Solids, John Wiley: New York, 1990.
[24]S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics,” IEEE Trans. Elect. Dev., vol. 44, pp. 104-109, 1997.
[25]B. -S. Jeong, J. D. Budai, and D. P. Norton, “Epitaxial stabilization of single crystal anatase films via reactive sputter deposition,” Thin Solid Films, vol. 422, pp. 166-169, 2002.
[26]Y. Abe and T. Fukuda, “TiO2 thin films formed by electron cyclotron resonance plasma oxidation of Ti thin films,” J. J. Appl. Phys., vol. 32, pp. 1167-1168, 1993.
[27]V. Mikhelashvili and G. Eisensteina, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation, ” J. Appl. Phys., vol. 89, pp. 3256-3269, 2001.
[28]H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988.
[29]P. Madhu Kumar, S. Badrinarayanan, and Murali Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, pp. 122-130, 2000.
[30]C. K. Maiti , S. K. Samanta, G. K. Dalapati, S. K. Nandi, and S. Chatterjee, “Electrical characterization of TiO2 gate oxides on strained-Si,” Microelectronic Engineering, vol. 72, pp. 253-256, 2004.
[31]H. N. Chua, K. L. Pey, W. H. Lai, J. W. Chai, J. S. Pan, D. H. C. Chua, and S. Y. Siah, “X-ray photoemission spectroscopy study of silicidation of Ti on BF2-implanted polysilicon,” J. Vac. Sci. technol. B, vol. 19, pp. 2252-2257, 2001.
[32]C. Y. Chen and J. G. Hwu, “Effect of postoxidation annealing on the reliability of rapid thermal thin gate oxides,” IEEE Electron Device Lett., vol. 18, pp. 1-3, 1997.
[33]J. Jeng and J. G. Hwu, “Thin-gate oxides prepared by pure water anodization followed by rapid thermal densification,” IEEE Electron Device Lett., vol. 17, p. 575-577, 1996.
[34]B. R. Sankapal, M. Ch. Lux-Steiner, and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Applied Surface Science, vol. 239, pp. 165-170, 2005.
[35]B. D. Cullity, Elements of X-ray Diffraction, Addison–Wesley, Reading, MA, 1978.
[36]Md. Mosaddeq-ur-Rahman, Guolin Yu, Tetsuo Soga, Takashi Jimbo, Hiroshi Ebisu, and Masayoshi Umeno, “Refractive index and degree of inhomogeneity of nanocrystalline TiO2 thin films: Effects of substrate and annealing temperature,” J. Appl. Phys., vol. 88, pp. 4634-4641, 2000.
[37]D. A. Baglee and M. C. Smayling, “The effects of write erase cycling on data loss in EEPROM's,” IEEE International Electron Device Meeting, pp. 624-627, 1985.
[38]D. J. Dumin and J. R. Maddux, “Correlation of stress-induced leakage current in thin oxides with trap generation inside the oxides,” IEEE Trans. Elect. Dev., vol. 40, pp. 986-993, 1993.
[39]S. Manzini and A. Modelli, in Insulating Films on Semiconductors, Elsevier Sciences Publishers, 1983.
[40]K. Naruke, S. Taguchi, and M. Wada, “Stress induced leakage current limiting to scale down EEPROM tunnel oxide thickness,” IEEE International Electron Device Meeting, pp. 424-427, 1988.
[41]R. Mahapatra, N. Poolamai, S. Chattopadhyay, N. G. Wright, Amit K. Chakraborty, Karl S. Coleman, P. G. Coleman, and C. P. Burrows, “Characterization of thermally oxidized Ti/SiO2 gate dielectric stacks on 4H–SiC substrate,” Appl. Phys. Lett., vol. 88, p. 072910, 2006.
[42]T. Kamada, M. Kitagawa, M. Shibuya and T. Hirao, “Structure and Properties of Silicon Titanium Oxide Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Method,” J. J. Appl. Phys., vol. 30, pp. 3594-3596, 199