| 研究生: |
吳梓瑋 Wu, Tzu-Wei |
|---|---|
| 論文名稱: |
應用移動最小二乘法於圓柱體薄殼大變形分析 Application of moving least square method for large deformation analysis of the circular cylindrical shells |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 大變形分析 、一階剪切變形理論 、移動最小二乘法 、圓柱薄殼 |
| 外文關鍵詞: | Theory of large deformation, Moving least square, Theory of first-order shear deformation |
| 相關次數: | 點閱:109 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以一階剪力變形與虛功原理推導控制方程式,據以分析圓柱薄殼之大變形,並以Newton-Raphson method將控制方程式進行線性化的疊代,以求解大變形後殼體的行為,而為了數值計算的方便使用quasi-Hermite type formulation以避免將本構關係式展開,並以移動最小二乘法進行求線性化後系統方程式的數值解,也可進一步計算其變形後軸力、彎矩與剪力。透過上述之方法,本文之數值算例分析了開放圓柱殼受彎矩後變形成封閉圓柱殼、兩端固定端之圓柱薄殼受內壓之線性與非線性分析、簡支與懸臂圓柱殼受軸壓力、雙邊鉸支圓柱殼受外壓力產生挫屈之分析,與開放圓柱淺殼之snap through現象。
In this thesis, the assumption of first-order shear deformation and the principle of virtual work are used to derive the equilibrium equations of the large deformation theory of cylindrical shells. Using the Newton-Raphson iteration method to linearize the non-linear equilibrium equations and analysis the behavior of the shells under large deformation. In the numerical process, using quasi-Hermite type formulation and moving least squares method, can solve equilibrium equations, constitutive relations and to obtain the numerical solution. With these process, the resulting force, bending moments and shears can also be solved.
The numerical examples include three categories: an opening shell bent to a closed shell by a moment, buckling of cylindrical shells under compression and the snap through phenomenon of cylindrical shells.
1. Lucy, L.B., Numerical approach to testing of fission hypothesis. Astronomical Journal, 1977. 82(12): p. 1013-1024.
2. Monaghan, J.J., An introduction to sph. Computer Physics Communications, 1988. 48(1): p. 89-96.
3. Lancaster, P. and K.Salkauskas, Surfaces generated by moving least-squares methods. Mathematics of Computation, 1981. 37(155): p. 141-158.
4. Belytschko, T., Y.Y. Lu, and L. Gu, Element-free galerkin methods. International Journal for Numerical Methods in Engineering, 1994. 37(2): p. 229-256.
5. Liu, W.K., S. Jun, and Y.F. Zhang, Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995. 20(8-9): p. 1081-1106.
6. Krongauz, Y. and T. Belytschko, A Petrov-Galerkin diffuse element method (PG DEM) and its comparison to EFG. Computational Mechanics, 1997. 19(4): p. 327-333.
7. Zhu, T., J.D. Zhang, and S.N. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational Mechanics, 1998. 21(3): p. 223-235.
8. Atluri, S.N. and T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, 1998. 22(2): p. 117-127.
9. Atluri, S.N. and T.L. Zhu, The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Computational Mechanics, 2000. 25(2-3): p. 169-179.
10. Han, Z.D. and S.N. Atluri, Meshless local Petrov-Galerkin (MLPG) approaches for solving 3D problems in elasto-statics. Cmes-Computer Modeling in Engineering & Sciences, 2004. 6(2): p. 169-188.
11. Atluri, S.N., J.Y. Cho, and H.G. Kim, Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Computational Mechanics, 1999. 24(5): p. 334-347.
12. Jumarhon, B., S. Amini, and K. Chen, The Hermite collocation method using radial basis functions. Engineering Analysis with Boundary Elements, 2000. 24(7-8): p. 607-611.
13. Zhang, Liu, Song, and Lu, Least-squares collocation meshless method. International Journal for Numerical Methods in Engineering, 2001. 51(9): p. 1089-1100.
14. Liew, K.M., T.Y. Ng, and Y.C. Wu, Meshfree method for large deformation analysis - a reproducing kernel particle approach. Engineering Structures, 2002. 24(5): p. 543-551.
15. Liew, K.M., Y.M. Cheng, and S. Kitipornchai, Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems. International Journal for Numerical Methods in Engineering, 2006. 65(8): p. 1310-1332.
16. Liu, Y., Y.C. Hon, and K.M. Liew, A meshfree Hermite-type radial point interpolation method for Kirchhoff plate problems. International Journal for Numerical Methods in Engineering, 2006. 66(7): p. 1153-1178.
17. Wang, Y.-M., S.-M. Chen, and C.-P. Wu, A meshless collocation method based on the differential reproducing kernel interpolation. Computational Mechanics, 2010. 45(6): p. 585-606.
18. Chen, S.-M., C.-P. Wu, and Y.-M. Wang, A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli-Euler beams and Kirchhoff-Love plates. Computational Mechanics, 2011. 47(4): p. 425-453.
19. Mirzaei, D. and R. Schaback, Direct Meshless Local Petrov-Galerkin (DMLPG) method: A generalized MLS approximation. Applied Numerical Mathematics, 2013. 68: p. 73-82.
20. 黃偉奇,圓柱殼大變形理論之分析,國立成功大學土木工程研究所碩士論文。2006。
21. Yin, Y., L.-Q. Yao, and Y. Cao, A 3D shell-like approach using element-free Galerkin method for analysis of thin and thick plate structures. Acta Mechanica Sinica, 2013. 29(1): p. 85-98.
22. Yiotis, A.J. and J.T. Katsikadelis, Analysis of cylindrical shell panels. A meshless solution. Engineering Analysis with Boundary Elements, 2013. 37(6): p. 928-935.
23. Costa, J.C., C.M. Tiago, and P.M. Pimenta, Meshless analysis of shear deformable shells: the linear model. Computational Mechanics, 2013. 52(4): p. 763-778.
24. 林均威,受束制之移動最小二乘法在古典板上之應用,國立成功大學土木工程研究所碩士論文。2013。
25. 張延宗,基於狀態變數與Hermite型近似之移動最小二乘法在古典板之應用,國立成功大學土木工程研究所碩士論文。2014。
26. Lloyd Hamilton Donnell, Beams,Plates,and Shells. 1976:McGraw-hill, New York
27. Harry Kraus, Thin Elastic Shells. 1972:Stony Brook, New York.
28. Wilhelm , Stress in Shells.1968:Los Altos,Calif.
29. Novozhilov,V.V., Foundations of The Nonlinear Theory of Elasticity.1953:Graylock Press, New York.