| 研究生: |
謝豐任 Sie, Fong-Ren |
|---|---|
| 論文名稱: |
碲化鉍基複合粉體之製備及其塊材熱電性質之研究 Powder preparation and thermoelectric properties of Bi2Te3-based bulk materials |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 碲化鉍基熱電材料 、退火處理 、無電鍍法 、熱裂解法 、火花電漿燒結 、熱電優值 |
| 外文關鍵詞: | Bi2Te3-based thermoelectric materials, annealing treatment, electroless plating, pyrolysis, spark plasma sintering (SPS), figure of merit |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碲化鉍基熱電材料是目前性質最優異的室溫型熱電材料,其塊材熱電性能熱穩定性對於商業熱電模組與系統的適用溫度息息相關。從實際運用於商業化量產的角度考量,碲化物塊材的熱穩定性及以粉末冶金法 (powder metallurgy) 製備具奈米微結構之碲化物塊材皆是值得研究的方向。
本論文針對以下四個部分進行研究,分別是 Bi0.5Sb1.5Te3 退火處理、 Bi0.5Sb¬1.5Te3/Sb 複合熱電塊材、Bi0.4Sb1.6Te3/TiO2-Ag複合熱電塊材及 Bi2Te3/Cu 複合熱電塊材。研究之目的旨在探討 Bi0.5Sb1.5Te3 之熱穩定性以及Bi0.5Sb1.5Te3、Bi0.4Sb1.6Te3、Bi2Te3複合熱電塊材之晶相、成分以及微觀結構,並進而關聯其熱電性質。
於 Bi0.5Sb1.5Te3 塊材熱穩定性方面,以機械合金法搭配火花電漿燒結 (SPS) 所製備之塊材經不同退火條件進行熱處理後,其缺陷型態、相對密度與熱電性質皆有明顯變化。其中,塊材經 250 ℃ 持溫 24 h 與經 200 ℃ 持溫 120 h 皆會產生 Te 第二相析出。經退火處理後之 Bi0.5Sb1.5Te3 塊材,其電傳導率及 Seebeck 係數皆分別呈現減少與增加的趨勢,雖然趨勢相同但內部缺陷型態卻不同。退火熱處理亦會使Bi0.5Sb1.5Te3 塊材具有較低之熱傳導率與晶格熱傳導率,顯示塊材內部的缺陷形成散射中心以增加聲子散射所致。Bi0.5Sb1.5Te3 塊材經 200 ℃ 持溫 72 h 退火後有最大之 ZT 值, 0.94 。相較於未退火之Bi0.5Sb1.5Te3 塊材的 ZT 值提升了約 19 % 。
於 Bi0.5Sb¬1.5Te3/Sb 複合熱電塊材方面,以無電鍍法搭配 SPS 製備 p-type Bi0.5Sb1.5Te3/Sb 複合塊材,其 Sb的添加量對顯微結構及熱電性質均有顯著影響。塊材內部可發現奈米 Sb 顆粒團聚於晶界處,此團聚會限制晶粒成長,使平均晶粒尺寸減少。Sb 的添加會使載子濃度與電傳導率增加,並且導致Fermi level 的移動,使 p-type Bi0.5Sb1.5Te3/Sb塊材工作溫度往高溫端移動。實驗結果證明,微量的 Sb 添加有助於聲子散射而獲得較低的熱傳導率與晶格熱傳導率,而過量的 Sb 添加會使熱傳導率與晶格熱傳導率大幅提升。Bi0.5Sb1.5Te3/Sb (2.8 wt%) 樣品於量測溫度500 K 時有最大ZT 值,0.54 。此值相較於 Bi0.5Sb1.5Te3 於 500 K時之 ZT 值,提升約 145%。
於 Bi0.4Sb1.6Te3/TiO2-Ag複合熱電塊材方面,以無電鍍法搭配 SPS 製備 p-type Bi0.4Sb1.6Te3/TiO2-Ag複合熱電塊材,TiO2-Ag 的添加量對缺陷型態、熱電性質及硬度值均有顯著影響。結果顯示,部分 Ag 原子可擴散進入 Bi0.4Sb1.6Te3中取代 Bi 或 Sb 原子位置且形成 〖〖Ag〗_Bi^' (Ag〗_Sb^') 缺陷,此可增加載子濃度與電傳導率與導致 Fermi level 的移動使 p-type Bi0.4Sb1.6Te3/TiO2-Ag塊材的工作溫度往高溫端移動。實驗結果證明TiO2-Ag的添加因電傳導率大幅增加而導致電子熱傳導的增加,但晶格熱傳導率因塊材內部缺陷與 TiO2-Ag 形成聲子散射源而減少。Bi0.4Sb1.6Te3/TiO2-Ag (0.25 wt%) 樣品擁有最佳 ZT 值、 ZTave 值及維氏硬度值,其值分別為1.19(375 K)、 1.02 及 104.0 Hv,相較於 Bi0.4Sb1.6Te3 塊材分別提升了 19%、24% 及 21.5%。
於 Bi2Te3/Cu 複合熱電塊材方面,以熱裂解法搭配 SPS 製備 n-type Bi2Te3/Cu 複合塊材,其 Cu含量對顯微結構及熱電性質皆有顯著影響。 SEM 與 TEM 結果顯示,Cu-rich 奈米顆粒均勻散佈於 Bi2Te3 基材中,其粒徑尺寸介於 50-100 nm。 Bi2Te3/Cu (0~1.0 wt%) 塊材皆呈現 n 型傳導, Cu 的添加明顯減少塊材的電傳導率,但同時增加塊材的 Seebeck 係數使功率因子因此增加。Bi2Te3/Cu (1.0 wt%) 於室溫有最大功率因子值,2.37 mW/mK2 ,此值相較於 Bi2Te3 塊材之功率因子提升了約 87%。 Cu 的添加有助於減少熱傳導率,其降幅約 29% 。Bi2Te3/Cu (1.0 wt%) 塊材於室溫具有最小的熱傳導率與最大的功率因子,因而具有最大ZT 值, 0.60 。此值相較於 Bi2Te3 塊材之室溫 ZT 值,提升約 94%。
上述四部分的實驗結果,可以進一步證明適當的退火熱處理與複合的製程有助於增加塊材的熱電性質。其提升 ZT 值的共同原因為透過製程參數的改變,使塊材具有適當的電傳導率及 Seebeck 係數。此外,缺陷濃度的調整與複合 Sb 、 TiO2-Ag 與 Cu 有助降低熱傳導率的功效, ZT 值因此而增加。
To investigate the thermal stability of Bi0.5Sb1.5Te3 and improve the thermoelectric performance of p-type Bi0.5Sb1.5Te3, p-type Bi0.4Sb1.6Te3 and n-type Bi2Te3, the various annealing conditions for Bi0.5Sb1.5Te3, Sb and TiO2-Ag addition in Bi0.5Sb1.5Te3 and Bi0.4Sb1.6Te3, and Cu addition in Bi2Te3 were chosen and investigated in this work. The crystal structure and microstructure of bulk specimens were confirmed by XRD and SEM, respectively. The results indicated that the secondary phase of Te is found in the samples annealed at 250 ℃ for 24 h and 200 ℃ for 120 h. Sb and TiO2-Ag aggregation were found in the grain boundary of Bi0.5Sb1.5Te3 and Bi0.4Sb1.6Te3, and Cu nanoparticles were well dispersed in the Bi2Te3 matrix and pinned at Bi2Te3 grain boundary by SEM results. The electrical conductivity trends for Bi0.5Sb1.5Te3 annealed at the various annealing conditions, Bi0.5Sb1.5Te3/Sb, Bi0.4Sb1.6Te3/TiO2-Ag and Bi2Te3/Cu were different, indicating that Sb and TiO2-Ag aggregation could help to increase the electrical conductivity, whereas the annealing process and Cu addition caused the decrease in electrical conductivity. On the other hand, all process were efficient decrease in thermal conductivity, which means that electronic thermal conductivity or lattice thermal conductivity could be decreased because of scattering the carrier or phonon. The ZT were improved in dfifferent process due to the appropriate power factor and the decreasing of thermal conductivity. The maximum ZT values for Bi0.5Sb1.5Te3 sample annealed at 200 ℃ for 72 h at 300 K, Bi0.5Sb1.5Te3/Sb (0.8 wt.%) at 300 K and Bi0.5Sb1.5Te3/Sb (4.3 wt.%) at 500 K, Bi0.4Sb1.6Te3/TiO2-Ag (0.25 wt.%) at 375 K and the Bi2Te3/Cu (1.0 wt.%) at 300 K were 0.94, 0.8, 0.54, 1.19 and 0.6, respectivity.
[1] D.M. Rowe, CRC handbook of thermoelectrics, CRC press (1995).
[2] L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457-1461 (2008).
[3] G.S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics: basic principles and new materials developments, Springer Science & Business Media (2013).
[4] H. Goldsmid, Recent studies of bismuth telluride and its alloys, Journal of Applied Physics, 32, 2198-2202 (1961).
[5] P.W. Bridgman, The Thermodynamics of Electrical Phenomena in Metals: And A Condensed Collection of Thermodynamic Formulas, Dover Publications (1961).
[6] W.F. Roeser, Thermoelectric thermometry, Journal of Applied Physics, 11, 388-407 (1940).
[7] H.B. Callen, The application of Onsager's reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects, Physical Review, 73, 1349 (1948).
[8] D.M. Rowe, Thermoelectrics handbook: macro to nano, CRC press (2005).
[9] G. Mahan, M. Bartkowiak, Wiedemann–Franz law at boundaries, Applied physics letters, 74, 953-954 (1999).
[10] T.M. Tritt, H. Böttner, L. Chen, Thermoelectrics: Direct solar thermal energy conversion, MRS bulletin, 33, 366-368 (2008).
[11] M. Steele, F. Rosi, Thermal conductivity and thermoelectric power of Germanium‐Silicon alloys, Journal of Applied Physics, DOI, (2004).
[12] G.A. Slack, M.A. Hussain, The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators, Journal of Applied Physics, 70, 2694-2718 (1991).
[13] R. Brebrick, R. Allgaier, Composition limits of stability of PbTe, The Journal of Chemical Physics, 32, 1826-1831 (1960).
[14] Y. Pei, A.D. LaLonde, N.A. Heinz, G.J. Snyder, High thermoelectric figure of merit in PbTe alloys demonstrated in PbTe–CdTe, Advanced Energy Materials, 2, 670-675 (2012).
[15] M. Ohta, K. Biswas, S.H. Lo, J. He, D.Y. Chung, V.P. Dravid, M.G. Kanatzidis, Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in p‐type PbTe Doped with Na2Te, Advanced Energy Materials, 2, 1117-1123 (2012).
[16] G.S. Nolas, J. Poon, M. Kanatzidis, Recent developments in bulk thermoelectric materials, MRS bulletin, 31, 199-205 (2006).
[17] B. Sales, D. Mandrus, R.K. Williams, Filled skutterudite antimonides: a new class of thermoelectric materials, Science, 272, 1325 (1996).
[18] N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, H. Metiu, Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30, The Journal of Chemical Physics, 115, 8060-8073 (2001).
[19] V. Kuznetsov, L. Kuznetsova, A. Kaliazin, D. Rowe, Preparation and thermoelectric properties of A_8^II B_16^III B_30^IV clathrate compounds, Journal of Applied Physics, 87, 7871-7875 (2000).
[20] W. Jeitschko, Transition metal stannides with MgAgAs and MnCu2Al type structure, Metallurgical Transactions, 1, 3159-3162 (1970).
[21] J. Tobola, J. Pierre, S. Kaprzyk, R. Skolozdra, M. Kouacou, Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration, Journal of Physics: Condensed Matter, 10, 1013 (1998).
[22] S. Sakurada, N. Shutoh, Effect of Ti substitution on the thermoelectric properties of (Zr, Hf) NiSn half-Heusler compounds, Applied Physics Letters, 86, 082105 (2005).
[23] W. Liu, X. Tang, H. Li, K. Yin, J. Sharp, X. Zhou, C. Uher, Enhanced thermoelectric properties of n-type Mg 2.16 (Si0.4Sn0.6)1-ySby due to nano-sized Sn-rich precipitates and an optimized electron concentration, Journal of Materials Chemistry, 22, 13653-13661 (2012).
[24] W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang, C. Uher, High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions, Journal of Solid State Chemistry, 203, 333-339 (2013).
[25] S. W. You, I. H. Kim, S. M. Choi, W. S. Seo, Solid-state synthesis and thermoelectric properties of Mg2+xSi0.7Sn0.3Sbm, Journal of Nanomaterials, 2013, 6 (2013).
[26] H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Copper ion liquid-like thermoelectrics, Nature Materials, 11, 422-425 (2012).
[27] P. Peng, Z. Gong, F. Liu, M. Huang, W. Ao, Y. Li, J. Li, Structure and thermoelectric performance of β-Cu2Se doped with Fe, Ni, Mn, In, Zn or Sm, Intermetallics, 75, 72-78 (2016).
[28] G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, B. B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nature materials, 3, 458-463 (2004).
[29] U. Häussermann, A.S. Mikhaylushkin, Electron-poor antimonides: complex framework structures with narrow band gaps and low thermal conductivity, Dalton Transactions, 39, 1036-1045 (2010).
[30] J. Lin, X. Li, G. Qiao, Z. Wang, J. S. Carrete, Y. Ren, L. Ma, Y. Fei, B. Yang, L. Lei, Unexpected high-temperature stability of β-Zn4Sb3 opens the door to enhanced thermoelectric performance, Journal of the American Chemical Society, 136, 1497-1504 (2014).
[31] L. D. Zhao, J. He, D. Berardan, Y. Lin, J. F. Li, C. W. Nan, N. Dragoe, BiCuSeO oxyselenides: new promising thermoelectric materials, Energy & Environmental Science, 7, 2900-2924 (2014).
[32] L. Zhao, D. Berardan, Y. Pei, C. Byl, L. Pinsard-Gaudart, N. Dragoe, Bi1− xSrx CuSeO oxyselenides as promising thermoelectric materials, Applied Physics Letters, 97, 092118 (2010).
[33] J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, L. D. Zhao, A high thermoelectric figure of merit ZT> 1 in Ba heavily doped BiCuSeO oxyselenides, Energy & Environmental Science, 5, 8543-8547 (2012).
[34] J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, L. D. Zhao, Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides, Journal of Alloys and Compounds, 551, 649-653 (2013).
[35] G. Ren, S. Butt, C. Zeng, Y. Liu, B. Zhan, J. Lan, Y. Lin, C. Nan, Electrical and thermal transport behavior in Zn-doped BiCuSeO oxyselenides, Journal of Electronic Materials, 44, 1627-1631 (2015).
[36] J. Sui, J. Li, J. He, Y. L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Cai, L. D. Zhao, Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides, Energy & Environmental Science, 6, 2916-2920 (2013).
[37] J. Liu, C. Wang, Y. Li, W. Su, Y. Zhu, J. Li, L. Mei, Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics, Journal of Applied Physics, 114, 223714 (2013).
[38] A. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patrício, N.M. Ferreira, S.M. Mikhalev, A. Weidenkaff, J. Frade, Designing strontium titanate-based thermoelectrics: an insight into defect chemistry mechanisms, Journal of Materials Chemistry A, 5, 3909-3922 (2017).
[39] H. C. Wang, C. L. Wang, W. B. Su, J. Liu, Y. Sun, H. Peng, L. M. Mei, Doping effect of La and Dy on the thermoelectric properties of SrTiO3, Journal of the American Ceramic Society, 94, 838-842 (2011).
[40] K. Uehara, S. T. John, Calculations of transport properties with the linearized augmented plane-wave method, Physical Review B, 61, 1639 (2000).
[41] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321, 554-557 (2008).
[42] K. Kishimoto, T. Koyanagi, Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties, Journal of applied physics, 92, 2544-2549 (2002).
[43] K. Kishimoto, M. Tsukamoto, T. Koyanagi, Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering, Journal of applied physics, 92, 5331-5339 (2002).
[44] C. H. Kuo, H. S. Chien, C. S. Hwang, Y. W. Chou, M. S. Jeng, M. Yoshimura, Thermoelectric properties of fine-grained PbTe bulk materials fabricated by cryomilling and spark plasma sintering, Materials transactions, 52, 795-801 (2011).
[45] K. Kishimoto, K. Yamamoto, T. Koyanagi, Influences of potential barrier scattering on the thermoelectric properties of sintered n-type PbTe with a small grain size, Japanese journal of applied physics, 42, 501 (2003).
[46] D. K. Ko, Y. Kang, C.B. Murray, Enhanced thermopower via carrier energy filtering in solution-processable Pt–Sb2Te3 nanocomposites, Nano letters, 11, 2841-2844 (2011).
[47] Y. Dou, X. Qin, D. Li, L. Li, T. Zou, Q. Wang, Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles, Journal of Applied Physics, 114, 044906 (2013).
[48] T. Zou, X. Qin, D. Li, B. Ren, G. Sun, Y. Dou, Y. Li, L. Li, J. Zhang, H. Xin, Enhanced thermoelectric performance via carrier energy filtering effect in β-Zn4Sb3 alloy bulk embedded with (Bi2Te3)0.2(Sb2Te3)0.8, Journal of Applied Physics, 115, 053710 (2014).
[49] Y. Li, D. Li, X. Qin, X. Yang, Y. Liu, J. Zhang, Y. Dou, C. Song, H. Xin, Enhanced thermoelectric performance through carrier scattering at heterojunction potentials in BiSbTe based composites with Cu3SbSe4 nanoinclusions, Journal of Materials Chemistry C, 3, 7045-7052 (2015).
[50] C. W. Nan, R. Birringer, Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model, Physical Review B, 57, 8264 (1998).
[51] Q. Jiang, J. Yang, J. Xin, Z. Zhou, D. Zhang, H. Yan, Carriers concentration tailoring and phonon scattering from n-type zinc oxide (ZnO) nanoinclusion in p-and n-type bismuth telluride (Bi2Te3): Leading to ultra low thermal conductivity and excellent thermoelectric properties, Journal of Alloys and Compounds, 694, 864-868 (2017).
[52] J. Li, Q. Tan, J. F. Li, D. W. Liu, F. Li, Z. Y. Li, M. Zou, K. Wang, BiSbTe‐Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties, Advanced Functional Materials, 23, 4317-4323 (2013).
[53] Z. He, C. Stiewe, D. Platzek, G. Karpinski, E. Müller, S. Li, M. Toprak, M. Muhammed, Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2∕ CoSb3 composites, Journal of applied physics, 101, 043707 (2007).
[54] T. Harman, P. Taylor, M. Walsh, B. LaForge, Quantum dot superlattice thermoelectric materials and devices, science, 297, 2229-2232 (2002).
[55] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597-602 (2001).
[56] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3, Nature materials, 6, 129-134 (2007).
[57] Y. M. Lin, M. Dresselhaus, Thermoelectric properties of superlattice nanowires, Physical review B, 68, 075304 (2003).
[58] M. Tokita, Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering, Materials science forum, Trans Tech Publ, pp. 83-88 (1999).
[59] M. Tokita, Mechanism of spark plasma sintering, Proceeding of NEDO International Symposium on Functionally Graded Materials, Japan, pp. 1-13 (1999).
[60] S. Wang, H. Li, R. Lu, G. Zheng, X. Tang, Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances, Nanotechnology, 24, 285702 (2013).
[61] J. Drabble, C. Goodman, Chemical bonding in bismuth telluride, Journal of Physics and Chemistry of Solids, 5, 142-144 (1958).
[62] L. Zhao, B. P. Zhang, J. F. Li, M. Zhou, W. Liu, Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering, Physica B: Condensed Matter, 400, 11-15 (2007).
[63] L. Zhao, B. P. Zhang, W. Liu, H. Zhang, J. F. Li, Effects of annealing on electrical properties of n-type Bi 2 Te 3 fabricated by mechanical alloying and spark plasma sintering, Journal of Alloys and Compounds, 467, 91-97 (2009).
[64] C. H. Kuo, C. S. Hwang, M. S. Jeng, W. S. Su, Y. W. Chou, J. R. Ku, Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering, Journal of Alloys and Compounds, 496, 687-690 (2010).
[65] J. Son, M. Oh, B. Kim, S. Park, B. Min, M. Kim, H. Lee, Effect of ball milling time on the thermoelectric properties of p-type (Bi, Sb)2Te3, Journal of Alloys and Compounds, 566, 168-174 (2013).
[66] S. S. Lin, C.-N. Liao, Effect of ball milling and post treatment on crystal defects and transport properties of Bi2(Se, Te)3 compounds, Journal of Applied Physics, 110, 093707 (2011).
[67] D. O. Scanlon, P. King, R. Singh, A. De La Torre, S. M. Walker, G. Balakrishnan, F. Baumberger, C. Catlow, Controlling Bulk Conductivity in Topological Insulators: Key Role of Anti‐Site Defects, Advanced Materials, 24, 2154-2158 (2012).
[68] K. Xiong, W. Wang, H. N. Alshareef, R. P. Gupta, J. B. White, B. E. Gnade, K. Cho, Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces, Journal of Physics D: Applied Physics, 43, 115303 (2010).
[69] H. Goldsmid, G. Nolas, J. Sharp, Thermoelectrics: Basic Principles and New Materials Developments, Springer, Berlin, (2001).
[70] X. A. Fan, X. Cai, Z. Rong, F. Yang, G. Li, Z. Gan, Resistance pressing sintering: A simple, economical and practical technique and its application to p-type (Bi, Sb)2 Te3 thermoelectric materials, Journal of Alloys and Compounds, 607, 91-98 (2014).
[71] C. Euvananont, N. Jantaping, C. Thanachayanont, Effects of composition and preferred orientation on microstructure and thermoelectric properties of p-type (BixSb(1− x))2Te3 alloys, Current Applied Physics, 11, S246-S250 (2011).
[72] Z. Xu, L. Hu, P. Ying, X. Zhao, T. Zhu, Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation, Acta Materialia, 84, 385-392 (2015).
[73] Q. Jiang, H. Yan, J. Khaliq, H. Ning, S. Grasso, K. Simpson, M.J. Reece, Large ZT enhancement in hot forged nanostructured p-type Bi0.5Sb1.5Te3 bulk alloys, Journal of Materials Chemistry A, 2, 5785-5790 (2014).
[74] Y. Nagami, K. Matsuoka, T. Akao, T. Onda, T. Hayashi, Z. C. Chen, Preparation and Characterization of Bi0.4Sb1.6Te3 Bulk Thermoelectric Materials, Journal of Electronic Materials, 43, 2262 (2014).
[75] F. Yang, Z. Rong, X. Cai, G. Li, Characterization and thermoelectric properties of Bi0.4Sb1.6Te3 nanostructured bulk prepared by mechanical alloying and microwave activated hot pressing, Ceramics International, 41, 6817-6823 (2015).
[76] L. Zhao, B. P. Zhang, J. F. Li, H. Zhang, W. Liu, Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering, Solid State Sciences, 10, 651-658 (2008).
[77] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 320, 634-638 (2008).
[78] W. Xie, X. Tang, Y. Yan, Q. Zhang, T.M. Tritt, Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Applied Physics Letters, 94, 102111 (2009).
[79] S. Sumithra, N.J. Takas, D.K. Misra, W.M. Nolting, P. Poudeu, K.L. Stokes, Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions, Advanced Energy Materials, 1, 1141-1147 (2011).
[80] T. Zhang, Q. Zhang, J. Jiang, Z. Xiong, J. Chen, Y. Zhang, W. Li, G. Xu, Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO, Applied Physics Letters, 98, 022104 (2011).
[81] Y. K. Xiao, Z. X. Li, J. Jiang, S. H. Yang, T. Zhang, Y. B. Zhai, G. J. Xu, The Influence of RuO2 Addition on the Thermoelectric Properties of BiSbTe Alloys, Key Engineering Materials, Trans Tech Publ, pp. 1651-1654 (2012).
[82] K. H. Lee, H. S. Kim, S. I. Kim, E. S. Lee, S. M. Lee, J. S. Rhyee, J. Y. Jung, I. H. Kim, Y. Wang, K. Koumoto, Enhancement of thermoelectric figure of merit for Bi 0.5Sb1.5Te3 by metal nanoparticle decoration, Journal of electronic materials, 41, 1165-1169 (2012).
[83] T. Zhang, J. Jiang, Y. Xiao, Y. Zhai, S. Yang, G. Xu, In situ precipitation of Te nanoparticles in p-type BiSbTe and the effect on thermoelectric performance, ACS applied materials & interfaces, 5, 3071-3074 (2013).
[84] K. T. Kim, G. H. Ha, Fabrication and enhanced thermoelectric properties of alumina nanoparticle-dispersed Bi0.5Sb1.5Te3 matrix composites, Journal of Nanomaterials, 2013, 8 (2013).
[85] Y. Xiao, G. Chen, H. Qin, M. Wu, Z. Xiao, J. Jiang, J. Xu, H. Jiang, G. Xu, Enhanced thermoelectric figure of merit in p-type Bi0.48Sb1.52Te3 alloy with WSe2 addition, Journal of Materials Chemistry A, 2, 8512-8516 (2014).
[86] D. Jung, K. Kurosaki, S. Seino, M. Ishimaru, K. Sato, Y. Ohishi, H. Muta, S. Yamanaka, Thermoelectric properties of Au nanoparticle‐supported Sb1.6Bi0.4Te3 synthesized by a γ‐ray irradiation method, physica status solidi (b), 251, 162-167 (2014).
[87] S. Seo, K. Lee, Y. Jeong, M.-W. Oh, B. Yoo, Method of Efficient Ag Doping for Fermi Level Tuning of Thermoelectric Bi0.5Sb1.5Te3 Alloys Using a Chemical Displacement Reaction, The Journal of Physical Chemistry C, 119, 18038-18045 (2015).
[88] Y. Dou, X. Qin, D. Li, Y. Li, H. Xin, J. Zhang, Y. Liu, C. Song, L. Wang, Enhanced thermoelectric performance of BiSbTe-based composites incorporated with amorphous Si3N4 nanoparticles, RSC Advances, 5, 34251-34256 (2015).
[89] S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics, Science, 348, 109-114 (2015).
[90] Y. Li, Y. Dou, X. Qin, J. Zhang, H. Xin, D. Li, C. Song, T. Zou, Y. Liu, C. Li, Enhanced thermoelectric figure of merit in p-type β-Zn4Sb3/Bi0.4Sb1.6Te3 nanocomposites, RSC Advances, 6, 12243-12248 (2016).
[91] Z. Huang, X. Dai, Y. Yu, C. Zhou, F. Zu, Enhanced thermoelectric properties of p-type Bi0.5Sb1.5Te3 bulk alloys by electroless plating with Cu and annealing, Scripta Materialia, 118, 19-23 (2016).
[92] E. B. Kim, P. Dharmaiah, D. Shin, K. H. Lee, S. J. Hong, Enhanced thermoelectric performance through carrier scattering at spherical nanoparticles in Bi0.5Sb1.5Te3/Ta2O5 composites, Journal of Alloys and Compounds, 703, 614-623 (2017).
[93] S. Seo, Y. Jeong, M. W. Oh, B. Yoo, Effect of hydrogen annealing of ball-milled Bi0.5Sb1.5Te3 powders on thermoelectric properties, Journal of Alloys and Compounds, 706, 576-583 (2017).
[94] C. Jiang, X. A. Fan, B. Feng, J. Hu, Q. Xiang, G. Li, Y. Li, Z. He, Thermal stability of p-type polycrystalline Bi2Te3-based bulks for the application on thermoelectric power generation, Journal of Alloys and Compounds, 692, 885-891 (2017).
[95] M. K. Han, K. Ahn, H. Kim, J. S. Rhyee, S. J. Kim, Formation of Cu nanoparticles in layered Bi2Te3 and their effect on ZT enhancement, Journal of Materials Chemistry, 21, 11365-11370 (2011).
[96] W. S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, Z. Ren, Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2. 7Se0. 3 Nanocomposites, Advanced Energy Materials, 1, 577-587 (2011).
[97] S. Chen, K. Cai, F. Li, S. Shen, The Effect of Cu Addition on the System Stability and Thermoelectric Properties of Bi2Te3, Journal of Electronic Materials, 43, 1966 (2014).
[98] H. J. Yu, M. Jeong, Y. S. Lim, W. S. Seo, O. J. Kwon, C. H. Park, H. J. Hwang, Effects of Cu addition on band gap energy, density of state effective mass and charge transport properties in Bi2Te3 composites, RSC Advances, 4, 43811-43814 (2014).
[99] K.H. Lee, S. M. Choi, S. I. Kim, J. W. Roh, D. J. Yang, W. H. Shin, H. J. Park, K. Lee, S. Hwang, J. H. Lee, Doping effects on the thermoelectric properties of Cu-intercalated Bi2Te2.7Se0.3, Current Applied Physics, 15, 190-193 (2015).
[100] M. Jeong, J. Y. Tak, S. Lee, W. S. Seo, H. K. Cho, Y.S. Lim, Effects of Cu incorporation as an acceptor on the thermoelectric transport properties of CuxBi2Te2.7Se0.3 compounds, Journal of Alloys and Compounds, 696, 213-219 (2017).
[101] F. Laufek, M. Drábek, R. Skála, The system Ni–Sb–Te at 400 C, The Canadian Mineralogist, 48, 1069-1079 (2010).
[102] W. Liu, X. Yan, G. Chen, Z. Ren, Recent advances in thermoelectric nanocomposites, Nano Energy, 1, 42-56 (2012).
[103] I. Cohen, M. Kaller, G. Komisarchik, D. Fuks, Y. Gelbstein, Enhancement of the thermoelectric properties of n-type PbTe by Na and Cl co-doping, Journal of Materials Chemistry C, 3, 9559-9564 (2015).
[104] S. Wang, X. Tan, G. Tan, X. She, W. Liu, H. Li, H. Liu, X. Tang, The realization of a high thermoelectric figure of merit in Ge-substituted β-Zn4Sb3 through band structure modification, Journal of Materials Chemistry, 22, 13977-13985 (2012).
[105] L. D. Zhao, S. H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C. I. Wu, T. P. Hogan, D. Y. Chung, V.P. Dravid, High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures, Journal of the American Chemical Society, 133, 20476-20487 (2011).
[106] P. P. Shang, B. P. Zhang, Y. Liu, J. F. Li, H. M. Zhu, Preparation and Thermoelectric Properties of La-Doped SrTiO3 Ceramics, Journal of electronic materials, 40, 926-931 (2011).
[107] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nature materials, 7, 105-114 (2008).
[108] I. H. Kim, S. M. Choi, W. S. Seo, D. I. Cheong, Thermoelectric properties of Cu-dispersed Bi0.5Sb1.5Te3, Nanoscale research letters, 7, 2 (2012).
[109] X. Zhang, Y. Zhou, Y. Pei, Y. Chen, B. Yuan, S. Zhang, Y. Deng, S. Gong, J. He, and L. D. Zhao, Enhancing thermoelectric performance of SnTe via nanostructuring particle size, Journal of Alloys and Compounds, 709, 575-580 (2017).
[110] Z. Song, Q. Zhang, Y. Liu, Z. Zhou, X. Lu, L. Wang, W. Jiang, and L. Chen, Enhanced thermoelectric properties in p-type Bi0.4Sb1.6Te3 alloy by combining incorporation and doping using multi-scale CuAlO2 particles, Physica Status, Solidi (a) 214, 1600451 (2017).
[111] H.R. Williams, R.M. Ambrosi, K. Chen, U. Friedman, H. Ning, M.J. Reece, M.C. Robbins, K. Simpson, and K. Stephenson, Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide, Journal of Alloys and Compounds, 626, 368-374 (2015).
校內:2019-08-01公開