簡易檢索 / 詳目顯示

研究生: 張緯
Chang, Wei
論文名稱: 奈米壓印高深寬比軟模及電子束微影製作週期性楔形結構並應用於液晶配向
Periodically wedge structures fabricated by nano-imprint high aspect ratio soft stamp and E-beam lithography and its application to liquid crystal alignments
指導教授: 林俊宏
Lin, Chung-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 奈米壓印挫曲液晶配向聚醯亞胺
外文關鍵詞: Nano-imprint, Buckling, Liquid crystal alignment, Polyimide
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以往有許多研究利用奈米壓印微影技術(Nanoimprint Lithography)製作週期性矩形溝槽結構,並對液晶分子進行配向,但矩形溝槽結構無法使配向的液晶分子具有預傾角條件,以致於在電壓操作下產生液晶分子方向分佈之不連續性缺陷,如錯向線。
    本實驗利用奈米壓印微影技術,製作高深寬比軟模並利用其壓印挫曲(Buckling)的特性,產生週期性楔形溝槽結構,在所製作結構之表面塗佈monoglycidyl ether-terminated PDMS或垂直配向聚醯亞胺(Polyimide)等兩種材料,觀察其對負型向列型液晶的垂直配向效果。相較於週期性矩形結構對液晶的配向效果,週期性楔形結構已大幅地減少錯向線的發生。另外,我們也利用電子束微影製作不同週期和高度的楔形結構用於液晶配向,其定性結果顯示當結構的週期變小或是高度變高時,對施加電壓的垂直排列負型液晶盒,液晶分子方向很容易沿著溝槽方向排列,這趨勢與Berreman的溝槽配向理論是一致的。

    In this study, we use nano-imprint lithography(NIL) to produce high aspect ratio soft stamp, and make it buckle while imprinting to generate periodic wedge groove structures. After that, we let the structures coated by two different vertical alignment layer, monoglycidyl ether-terminated PDMS and polyimide. And observe their vertical alignments to liquid crystals (LCs) with negative dielectric anisotropy. We find out that the liquid crystal cells with wedge structures can obviously reduce the disclination lines compared to rectangular structures. In addition, we produce wedge structures with different pitches and heights by electron beam lithography(E-beam Lithography). The results show that when the pitch gets smaller or height gets larger. The anchoring force of groove direction will become larger after we apply the voltage, so the LCs will prefer to align in the groove direction. And the results are consistent with the Berreman’s theory.

    中文摘要 I 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII Chapter 1 緒論 1 1.1 前言 1 1.2 研究動機 4 1.3 論文架構 4 Chapter 2 液晶配向方法與理論介紹 5 2.1 液晶之配向處理 5 2.1.1 液晶分子排列的種類[18] 5 2.1.2 錯向線[9] 6 2.2 接觸式配向技術 7 2.2.1 摩擦配向[9, 18] 7 2.3 非接觸式配向技術 8 2.3.1 斜向蒸鍍法[9, 18] 8 2.3.2 光配向法[9] 9 2.3.3 離子束法 9 2.3.4 電漿束法 9 2.3.5 表面圖案化[9] 10 2.4 Berreman溝槽理論 11 Chapter 3 研究方法 20 3.1 實驗藥品材料 20 3.2 高深寬比母模與軟模製備 21 3.2.1 氣體直接增壓式奈米壓印機台 21 3.2.2 實驗流程 21 3.3 使用奈米壓印技術製作週期性楔形結構 23 3.3.1 機台架構 23 3.3.2 實驗流程 24 3.4 週期性溝槽結構應用於垂直液晶配向 24 3.4.1 使用奈米壓印技術製作週期性溝槽結構 24 3.4.2 液晶盒製作 25 3.4.3 光電量測系統架構 26 Chapter 4 實驗結果與討論 40 4.1 高深寬比母模與軟模製備 40 4.1.1 高深寬比母模與軟模複製結果 40 4.1.2 高深寬比母模製程參數優化 41 4.2 使用奈米壓印技術製作週期性楔形結構 43 4.2.1 壓印壓力暨母模深度對壓印後結構表面形貌的影響 43 4.2.2 阻劑厚度對壓印後結構表面形貌的影響 44 4.2.3 壓印溫度對壓印後結構表面形貌的影響 45 4.2.4 母模週期對壓印後結構表面形貌的影響 46 4.2.5 改善深寬比為4.5的PFPE軟模發生挫曲方向不一致的情況 47 4.3 週期性溝槽結構應用於垂直液晶配向 48 4.3.1 週期性矩形溝槽結構對液晶配向的結果 48 4.3.2 週期性楔形溝槽結構對液晶配向的結果 49 4.3.3 週期性溝槽對液晶分子定向之影響與觀察 51 4.3.4 奈米壓印與電子束微影製作之楔形結構對液晶配向的比較 53 Chapter 5 結論與未來展望 99 5.1 實驗總結 99 5.2 未來展望 99 參考文獻 101

    1. K. Jung-Wook, S. Dong Han, K. Ki-Han, and Y. Tae-Hoon, "Fast switching of a nematic liquid crystal cell with neither alignment materials nor alignment process," Proc. SPIE 8642, 86420O-1-86420O-6 (2013).
    2. M. J. Park, and O. O. Park, "Alignment of liquid crystals on a topographically nano-patterned polymer surface prepared by a soft-imprint technique," Microelectronic Engineering 85, 2261-2265 (2008).
    3. Y. J. Liu, W. W. Loh, E. S. P. Leong, T. S. Kustandi, X. W. Sun, and J. H. Teng, "Nanoimprinted ultrafine line and space nanogratings for liquid crystal alignment," Nanotechnology 23, 465302 (2012).
    4. H. Hah, S.-J. Sung, M. Han, S. Lee, and J.-K. Park, "Effect of the shape of imprinted alignment layer on the molecular orientation of liquid crystal," Materials Science & Engineering C-Biomimetic and Supramolecular Systems 27, 798-801 (2007).
    5. D.-R. Chiou, L.-J. Chen, and C.-D. Lee, "Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method," Langmuir 22, 9403-9408 (2006).
    6. W. Schenck, D.-H. Ko, and E. Samulski, "Liquid crystal alignment on polymer line gratings," Journal of Applied Physics 109,064301-1-064301-5 (2011).
    7. Y.-W. Lim, D.-W. Kim, and S.-D. Lee, "Polymeric optical films as patterned retarders and alignment layers for transflective liquid crystal displays," Molecular Crystals and Liquid Crystals 489, 183-193 (2008).
    8. J. Kim, Y.-W. Lim, J.-H. Na, and S.-D. Lee, "Tunable binary retarder using self-aligned liquid crystal on anisotropic polymer film by photo-assisted imprinting," Applied Optics 52, 1752-1757 (2013).
    9. M. H. Kohki Takatoh , Mitsuhiro Koden , Nobuyuki Itoh , Ray Hasegawa , Masanori Sakamoto, Alignment technologies and applications of
    liquid crystal devices (Academic, 2005).
    10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Applied Physics Letters 67, 3114-3116 (1995).
    11. Y. N. Xia, and G. M. Whitesides, "Soft lithography," Annual Review of Materials Science 28, 153-184 (1998).
    12. H. Park, H. Cho, J. Kim, J. W. Bang, S. Seo, Y. Rahmawan, D. Y. Lee, and K.-Y. Suh, "Multiscale transfer printing into recessed microwells and on curved surfaces via hierarchical perfluoropolyether stamps," Small 10, 52-59 (2014).
    13. C. Y. Hui, A. Jagota, Y. Y. Lin, and E. J. Kramer, "Constraints on microcontact printing imposed by stamp deformation," Langmuir 18, 1394-1407 (2002).
    14. K. G. Sharp, G. S. Blackman, N. J. Glassmaker, A. Jagota, and C. Y. Hui, "Effect of stamp deformation on the quality of microcontact printing: theory and experiment," Langmuir 20, 6430-6438 (2004).
    15. Y. G. Y. Huang, W. X. Zhou, K. J. Hsia, E. Menard, J. U. Park, J. A. Rogers, and A. G. Alleyne, "Stamp collapse in soft lithography," Langmuir 21, 8058-8068 (2005).
    16. C.-M. Chen, and S. Yang, "Directed water shedding on high-aspect-ratio shape memory polymer micropillar arrays," Advanced Materials 26, 1283-1288 (2014).
    17. L. Malic, K. Morton, L. Clime, and T. Veres, "All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing," Lab on a Chip 13, 798-810 (2013).
    18. 劉. 譯. 松本正一 角田市良 合著, 液晶之基礎與應用 (1996).
    19. F. J. Kahn, "Ir-laser-addressed thermooptic smectic liquid-crystal storage displays," Applied Physics Letters 22, 111-113 (1973).
    20. D. W. Berreman, "Solid surface shape and alignment of an adjacent nematic liquid-crystal," Physical Review Letters 28, 1683 (1972).
    21. D. W. Berreman, "Alignment of liquid crystals by grooved surfaces," Molecular Crystals and Liquid Crystals 23, 215-231 (1973).
    22. J. L. Janning, "Thin film surface orientation for liquid crystals," Applied Physics Letters 21, 173-174 (1972).
    23. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, "Surface-mediated alignment of nematic liquid-crystals with polarized laser-light," Nature 351, 49-50 (1991).
    24. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. H. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, "Atomic-beam alignment of inorganic materials for liquid-crystal displays," Nature 411, 56-59 (2001).
    25. O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, and O. D. Lavrentovich, "Planar and tilted uniform alignment of liquid crystals by plasma-treated substrates," Liquid Crystals 31, 859-869 (2004).
    26. J.-i. Fukuda, M. Yoneya, and H. Yokoyama, "Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined," Physical Review Letters 98, 187803 (2007).
    27. J.-i. Fukuda, M. Yoneya, and H. Yokoyama, "Erratum: surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined," Physical Review Letters 99, 139902 (2007).
    28. J.-i. Fukuda, M. Yoneya, and H. Yokoyama, "Critical reexamination of Berreman's theory on surface anchoring," Molecular Crystals and Liquid Crystals 516, 12-25 (2010).
    29. J.-i. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, "Theory of anchoring on a two-dimensionally grooved surface," Physical Review E 77, 011702 (2008).
    30. "SU-8:Thick Photo-Resist for MEMS
    "http://memscyclopedia.org/su8.html"."
    31. M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park, and J. W. Baldwin, "Cryogenic etch process development for profile control of high aspect-ratio submicron silicon trenches," Journal of Vacuum Science & Technology B 25, 21-28 (2007).
    32. M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, "Fabrication of nanostructures using a UV-based imprint technique," Microelectronic Engineering 53, 233-236 (2000).
    33. J. B. Kim, C. J. Choi, J. S. Park, S. J. Jo, B. H. Hwang, M. K. Jo, D. Kang, S. J. Lee, Y. S. Kim, and H. K. Baik, "Orientational transition of liquid crystal molecules by a photoinduced transformation process into a recovery-free silicon oxide layer," Advanced Materials 20, 3073-3078 (2008).
    34. T. Scharf, Polarized light in liquid crystals and polymers (Academic, 2007).
    35. C.-H. Lin, H.-H. Lin, W.-Y. Chen, and T.-C. Cheng, "Direct imprinting on a polycarbonate substrate with a compressed air press for polarizer applications," Microelectronic Engineering 88, 2026-2029 (2011).
    36. J. B. Kim, J. R. Lim, J. S. Park, H. J. Ahn, M. J. Lee, S. J. Jo, M. Kim, D. Kang, S. J. Lee, Y. S. Kim, and H. K. Baik, "The directional peeling effect of nanostructured rigiflex molds on liquid-crystal devices: liquid-crystal alignment and optical properties," Advanced Functional Materials 18, 1340-1347 (2008).
    37. H.-J. Jeon, H. S. Jeong, Y. H. Kim, W.-B. Jung, J. Y. Kim, and H.-T. Jung, "Fabrication of 10 nm-scale complex 3D Nanopatterns with multiple shapes and components by secondary sputtering phenomenon," Acs Nano 8, 1204-1212 (2014).

    無法下載圖示 校內:2019-09-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE