簡易檢索 / 詳目顯示

研究生: 夏睿璞
Hsia, Jui-Pu
論文名稱: 連續損傷力學模型應用於T型複材疊層結構之漸進式損傷分析
Progressive Damage Analysis of T-joint Composite Structures Using Continuum Damage Modeling
指導教授: 梁育瑞
Liang, Yu-Jui
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 96
中文關鍵詞: T型接頭複材疊層結構漸進式損傷分析連續損傷力學模型ABAQUS內聚力元素
外文關鍵詞: T-joint, composite structures, progressive damage analysis, continuum damage model, ABAQUS, cohesive
相關次數: 點閱:63下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於T型複材疊層結構優異的高強度、高剛度與重量比表現,使其廣泛應用在飛機的複合材料結構形式。但由於T型複材疊層結構的關鍵應力區常存在複雜的應力分布,傳統的有限元素方法也缺乏精確預測其漸進式損傷機制,因此過去幾十年來數值方法在此類問題的應用上受到越來越多關注。本研究使用ABAQUS建立T型複材疊層結構的有限元素模型,並使用美國國家航太總署(NASA) Langley Research Center 針對預測複合材料損傷開發的LaRC04破壞準則。其中複材疊層結構層內使用連續損傷力學模型,其藉由元素的局部勁度遞減來描述層內損傷,並比較不同的連續損傷力學模型對分析結果的影響。另一方面,層間的脫層損傷機制則使用內聚力元素來模擬。本研究對T型複材疊層結構做了一個完整漸進式損傷分析步驟,提出實務上減少積木式工程驗證法的成本的方式。結果表明,目前單獨使用內聚力元素的模擬方法不足以分析漸進式損傷機制。同時使用連續損傷力學模型與內聚力元素能更完整模擬出疊層與填充區域等結構之間的層內與層間的損傷。研究成果也顯示不同的連續損傷力學模型在T型複材疊層結構的分析結果的適應性,並驗證網格數量對連續損傷力學模型的影響。本研究對於瞭解複合材料結構的損傷行為和設計應用,提供具有重要的參考價值和實際意義。

    T-joint composite structures are widely used in modern aircraft construction due to their excellent strength-weight ratio. However, the complex stress distribution in T-joints and the limitations of traditional finite element methods in accurately predicting the progressive damage mechanisms have led to increased interest in numerical methods for addressing these challenges. In this study, a finite element model for T-joint composite structures were developed in ABAQUS. The damage criterion LaRC04, developed by NASA Langley Research Center, was utilized to predict the damage occur in composite materials. Within the composite laminate layers, a continuum damage model (CDM) was employed to describe intra-ply damage by considering local stiffness degradation. This study also compared different continuum damage models to assess their impact on the analysis results. For inter-ply delamination, cohesive elements were used for simulation. A comprehensive modeling and progressive damage analysis procedure was conducted to provide a cost-effective approach for T-joint composite laminates, aiming to reduce the reliance on block-by-block engineering verification methods. The results showed that the combined use of continuum damage models and cohesive elements effectively simulated both intra-ply and inter-ply damage in the laminates and bonding regions. This study also demonstrated the adaptability of different continuum damage models and verified the influence of mesh density on T-joint model. Overall, this research contributes valuable insights for understanding the damage behavior and design applications of composite material structures.

    中文摘要 I ABSTRACT II 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 一、緒論 1 1-1 研究背景與文獻回顧 1 1-1-1 複合材料 1 1-1-2 T型複材疊層結構 2 1-1-3 疊層複材結構破壞準則與損傷模型 4 1-1-4 T型複材疊層結構之損傷分析 6 1-2 研究動機 9 1-3 研究目標與流程 13 1-3-1 研究目標 13 1-3-2. 研究流程 13 二、研究方法 14 2-1 LaRC04破壞準則 14 2-2 連續損傷力學模型-Gradual Softening Method (GSM) 18 2-3 連續損傷力學模型-Instantaneous Softening Method (ISM) 23 2-4 內聚力模型(Cohesive Zone Model) 25 2-5 使用者自定義材料(User-define Material; UMAT) 28 2-6運算流程圖Flow Chart 29 2-7 Patch Test 30 三、T型複材疊層結構之有限元素模型 31 3-1 幾何模型 31 3-2 材料性質 32 3-3 邊界條件 34 3-4 網格 36 四、結果與討論 38 4-1 數值分析結果- Cohesive Zone Model (CZM) 38 4-2 數值分析結果- Gradual Softening Method (GSM) 40 4-2-1網格細化的影響-GSM 40 4-2-2考慮內聚力元素 47 4-2-3綜合比較 55 4-3 數值分析結果- Instantaneous Softening Method (ISM) 58 4-3-1網格細化的影響-ISM 58 4-3-2內聚力元素的影響 65 4-3-3綜合比較 67 4-4 研究討論 69 五、結論與未來展望 71 5-1 結論 71 5-2 未來展望 73 參考文獻 75

    [1] Ed Sridharan S., Delamination behavior of composites, 1st ed. CRC press., 2008.
    [2] J. W. Gillespie and R. B. Pipes, “Behavior of Integral Composite Joint-Finite Element and Experimental Evaluation,” 1978.
    [3] S. Teixeira de Freitas and J. Sinke, “Failure analysis of adhesively-bonded metal-skin-to-composite-stiffener: Effect of temperature and cyclic loading,” Compos Struct, vol. 166, pp. 27–37, Apr. 2017, doi: 10.1016/j.compstruct.2017.01.027.
    [4] Z. Sápi, R. Butler, and A. Rhead, “High fidelity analysis to predict failure in T-joints,” Compos Struct, vol. 225, p. 111143, Oct. 2019, doi: 10.1016/j.compstruct.2019.111143.
    [5] F. Hélénon, M. R. Wisnom, S. R. Hallett, and R. S. Trask, “Numerical investigation into failure of laminated composite T-piece specimens under tensile loading,” Compos Part A Appl Sci Manuf, vol. 43, no. 7, pp. 1017–1027, Jul. 2012, doi: 10.1016/j.compositesa.2012.02.010.
    [6] S. Kumari and P. K. Sinha, “Finite Element Analysis of Composite Wing T-Joints,” Journal of Reinforced Plastics and Composites, vol. 21, no. 17, pp. 1561–1585, Nov. 2002, doi: 10.1177/0731684402021017474.
    [7] K. Zimmermann, D. Zenkert, and M. Siemetzki, “Testing and analysis of ultra thick composites,” Compos B Eng, vol. 41, no. 4, pp. 326–336, Jun. 2010, doi: 10.1016/j.compositesb.2009.12.004.
    [8] R. M. Christensen, “The World Wide Failure Exercise II Examination of Results,” Journal of Reinforced Plastics and Composites, vol. 32, no. 21, pp. 1668–1672, Nov. 2013, doi: 10.1177/0731684413498634.
    [9] R. Krueger, “Virtual crack closure technique: History, approach, and applications,” Appl Mech Rev, vol. 57, no. 2, pp. 109–143, Mar. 2004, doi: 10.1115/1.1595677.
    [10] S. R. Hallett, B. G. Green, W.-G. Jiang, K. H. Cheung, and M. R. Wisnom, “The open hole tensile test: a challenge for virtual testing of composites,” Int J Fract, vol. 158, no. 2, pp. 169–181, Aug. 2009, doi: 10.1007/s10704-009-9333-8.
    [11] P. Maimí, P. P. Camanho, J. A. Mayugo, and C. G. Dávila, “A continuum damage model for composite laminates: Part I - Constitutive model,” Mech. Mater., 2007.
    [12] P. Maimí, P. P. Camanho, J. A. Mayugo, and C. G. Dávila, “A continuum damage model for composite laminates: Part II - Computational implementation and validation,” Mech. Mater., 2007.
    [13] N. Moes, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” Int J Numer Methods Eng, vol. 46, no. 1, pp. 131–150, Sep. 1999, doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
    [14] D. Ling, Q. Yang, and B. Cox, “An augmented finite element method for modeling arbitrary discontinuities in composite materials,” Int J Fract, vol. 156, no. 1, pp. 53–73, Mar. 2009, doi: 10.1007/s10704-009-9347-2.
    [15] E. V. Iarve, M. R. Gurvich, D. H. Mollenhauer, C. A. Rose, and C. G. Dávila, “Mesh-independent matrix cracking and delamination modeling in laminated composites,” Int J Numer Methods Eng, vol. 88, no. 8, pp. 749–773, Nov. 2011, doi: 10.1002/nme.3195.
    [16] B. Y. Chen, S. T. Pinho, N. V. De Carvalho, P. M. Baiz, and T. E. Tay, “A floating node method for the modelling of discontinuities in composites,” Eng Fract Mech, vol. 127, pp. 104–134, Sep. 2014, doi: 10.1016/j.engfracmech.2014.05.018.
    [17] A. R. Rispler, G. P. Steven, and L. Tong, “Failure Analysis of Composite T-Joints Including Inserts,” Journal of Reinforced Plastics and Composites, vol. 16, no. 18, pp. 1642–1658, Dec. 1997, doi: 10.1177/073168449701601802.
    [18] F. Hélénon, M. R. Wisnom, S. R. Hallett, and R. S. Trask, “Numerical investigation into failure of laminated composite T-piece specimens under tensile loading,” Compos Part A Appl Sci Manuf, vol. 43, no. 7, pp. 1017–1027, Jul. 2012, doi: 10.1016/j.compositesa.2012.02.010.
    [19] Daniel Adams, “Composites testing as part of a building block approach,” Composites World, 2021.
    [20] C. G. Davila, P. P. Camanho, and C. A. Rose, “Failure Criteria for FRP Laminates,” J Compos Mater, vol. 39, no. 4, pp. 323–345, Feb. 2005, doi: 10.1177/0021998305046452.
    [21] S. Pinho, C. Dávila, P. Camanho, L. Iannucci, and P. Robinson, “Failure Models and Criteria for Frp Under In-Plane or Three-Dimensional Stress States Including Shear Non-Linearity,” Mar. 2005.
    [22] P. P. Camanho, C. G. Dávila, S. T. Pinho, L. Iannucci, and P. Robinson, “Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear,” Compos Part A Appl Sci Manuf, vol.37, no.2, pp.165–176, Feb. 2006, doi: 10.1016/j.compositesa.2005.04.023.
    [23] G. Catalanotti, “Prediction of in situ strengths in composites: Some considerations,” Compos Struct, vol. 207, pp. 889–893, Jan. 2019, doi: 10.1016/j.compstruct.2018.09.075.
    [24] M. Ait Mohammed and M. Tarfaoui, “A Progressive Damage Modelling of Glass/Epoxy Cylindrical Structure Subjected to Low-Velocity Impact,” Eng Fail Anal, vol. 134, p. 106036, Apr. 2022, doi: 10.1016/j.engfailanal.2022.106036.
    [25] S.C. Tan, “A progressive failure model for composite laminates containing openings,” J Compos Mater, pp. 556–577, 1991.
    [26] S.C. Tan and J. Perez, “Progressive failure of laminated composites with a hole under compressive loading,” J Reinf Plast Compos, pp. 1043–1057, Oct. 1993.
    [27] P.P. Camanho and F.L. Matthews, “A progressive damage model for mechanically fastened joints in composite laminates,” J Compos Mater, pp. 2248–2280, 1999.
    [28] G. Gao, L. An, I. K. Giannopoulos, N. Han, E. Ge, and G. Hu, “Progressive Damage Numerical Modelling and Simulation of Aircraft Composite Bolted Joints Bearing Response,” Materials, vol. 13, no. 24, p. 5606, Dec. 2020, doi: 10.3390/ma13245606.
    [29] D. S. Dugdale, “Yielding of steel sheets containing slits,” J Mech Phys Solids, vol. 8, no. 2, pp. 100–104, May 1960, doi: 10.1016/0022-5096(60)90013-2.
    [30] G. I. Barenblatt, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” 1962, pp. 55–129. doi: 10.1016/S0065-2156(08)70121-2.
    [31] D. Zhang, Q. Wang, and J. Dong, “Simulation study on CFRP strengthened reinforced concrete beam under four-point bending,” Computers and Concrete, vol. 17, no. 3, pp. 407–421, Mar. 2016, doi: 10.12989/cac.2016.17.3.407.
    [32] F. Hélénon, M. R. Wisnom, S. R. Hallett, and R. S. Trask, “Investigation into failure of laminated composite T-piece specimens under bending loading,” Compos Part A Appl Sci Manuf, vol. 54, pp. 182–189, Nov. 2013, doi: 10.1016/j.compositesa.2013.07.015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE