| 研究生: |
劉詩凱 Liu, Shi-Kai |
|---|---|
| 論文名稱: |
探討扁菱蛋白酶 RHBDL2 在腫瘤細胞的抗失巢凋亡作用中所扮演的角色 The role of human rhomboid intramembrane serine protease RHBDL2 in the anoikis-resistance of tumor cells |
| 指導教授: |
施桂月
Shi, Guey-Yueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 扁菱蛋白 、失巢凋亡 、非貼附性生長 |
| 外文關鍵詞: | Rhomboid, Anoikis, Anchorage-independent growth |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
惡性轉移一直是癌症病患的主要死亡原因,而惡性腫瘤的一個重要特徵便是其具有抗失巢凋亡的能力而在非貼附性的環境中仍可繼續生長。在過去的研究中指出,表皮生長因子受體(EGFR)訊息路徑的異常活化可導致腫瘤細胞產生對於失巢凋亡的抗性而在癌症轉移的過程中扮演著重要的角色。而在最近的研究中發現,人類膜內絲胺酸蛋白酶 RHBDL2 可藉由裂解表皮生長因子 (EGF)刺激 EGFR 路徑的活化,此外在我們過去的研究中也發現過度表現 RHBDL2 的 HaCaT 細胞具有較快的生長速度及較佳的移行能力,這些結果顯示出 RHBDL2 的作用或許涉及在癌症的惡性轉移過程中。經由進一步檢視不同腫瘤細胞株中 RHBDL2 的表現情形,只有 HeLa S3 與 MDA-MB-231 這二株細胞在懸浮性的培養環境中仍可持續高度表現 RHBDL2。其中,較惡性的 HeLa S3 細胞以懸浮性條件培養時,可觀察到RHBDL2 的高度表現及 ERK 的持續磷酸化,而相對較良性的 HeLa 細胞則無此現象。此外,不論是利用 shRNA 抑制 RHBDL2 的表現量或是加入絲胺酸蛋白酶抑制劑 3,4-dichloroisocoumarin ,都可明顯的抑制 HeLa S3 細胞在懸浮性培養環境中的生長能力。接著我們進一步檢視 EGFR 訊息路徑對於 HeLa S3抗失巢凋亡能力的影響,結果顯示出抑制 EGFR 的作用會減弱 HeLa S3 對於失巢凋亡的抗性;而相對的,刺激 EGFR 的活化則可增強 HeLa 細胞在非貼附性培養環境中的生存能力。綜合這些結果,我們認為 RHBDL2 在與 EGFR 相關的抗失巢凋亡作用中扮演著重要的角色。
Metastasis is the major cause of mortality in cancer patients, the hallmark features of metastatic cancer are anoikis resistance and anchorage-independent growth. Previous studies have shown that signaling through the epidermal growth factor receptor (EGFR) may confer resistance to anoikis and play a pivotal role in tumor metastasis. Recently, it has been suggested that an intramembrane serine protease RHBDL2 (rhomboid-like 2) activates EGFR by releasing epidermal growth factor (EGF). Additionally, in our previous studies, we found that RHBDL2 overexpressed HaCaT cells exhibited higher migratory ability and proliferation rate. The results suggest that RHBDL2 may be involved in metastasis. By investigating the expression of RHBDL2 in tumor cells, we found that the mRNA and protein levels of RHBDL2 were significantly elevated in human tumor cells, such as HeLa and MDA-MB-231, under non-attachment culture condition. The suspension-cultured malignant HeLa S3 cells but not HeLa, expressed persistently high levels of RHBDL2 and phosphorylated extracellular signal-regulated kinase (p-ERK). Furthermore, either shRNA knockdown of RHBDL2 or treatment with 3,4-dichloroisocoumarin, a serine protease inhibitor, suppressed the growth of suspended HeLa S3 cells. Moreover, we survey the effect of EGFR signalling in anoikis-resistant ability of HeLa S3 cells. The results show that EGFR inhibition attenuated the ability of anoikis-resistance of HeLa S3 cells. In contrast, activation of EGFR appears to promote the viability of HeLa cells under non-attachment culture condition. Taken together, our results suggest that RHBDL2 may play a pivotal role in EGFR-mediated anoikis resistance of tumor cells.
Adrain, C., Strisovsky, K., Zettl, M., Hu, L., Lemberg, M.K., and Freeman, M. (2011). Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO reports 12, 421-427.
Arteaga, C.L. (2002). Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7 Suppl 4, 31-39.
Bajt, M.L., Lawson, J.A., Vonderfecht, S.L., Gujral, J.S., and Jaeschke, H. (2000). Protection against Fas receptor-mediated apoptosis in hepatocytes and nonparenchymal cells by a caspase-8 inhibitor in vivo: evidence for a postmitochondrial processing of caspase-8. Toxicol Sci 58, 109-117.
Bang, A.G., and Kintner, C. (2000). Rhomboid and Star facilitate presentation and processing of the Drosophila TGF-alpha homolog Spitz. Genes Dev 14, 177-186.
Barnes, D., and Sato, G. (1980). Serum-free cell culture: a unifying approach. Cell 22, 649-655.
Baselga, J. (2001). Clinical trials of Herceptin(trastuzumab). Eur J Cancer 37 Suppl 1, S18-24.
Blobel, C.P. (2005). ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6, 32-43.
Boudreau, N., Sympson, C.J., Werb, Z., and Bissell, M.J. (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267, 891-893.
Brossier, F., Jewett, T.J., Sibley, L.D., and Urban, S. (2005). A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci U S A 102, 4146-4151.
Calalb, M.B., Polte, T.R., and Hanks, S.K. (1995). Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15, 954-963.
Carpenter, G. (1987). Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem 56, 881-914.
Carpenter, G., and Cohen, S. (1990). Epidermal growth factor. J Biol Chem 265, 7709-7712.
Cipolat, S., Rudka, T., Hartmann, D., Costa, V., Serneels, L., Craessaerts, K., Metzger, K., Frezza, C., Annaert, W., D'Adamio, L., et al. (2006). Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163-175.
Coucouvanis, E., and Martin, G.R. (1995). Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83, 279-287.
Coussens, L.M., Fingleton, B., and Matrisian, L.M. (2002). Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387-2392.
Crawford, H.C., Dempsey, P.J., Brown, G., Adam, L., and Moss, M.L. (2009). ADAM10 as a therapeutic target for cancer and inflammation. Curr Pharm Des 15, 2288-2299.
Demers, M.J., Thibodeau, S., Noel, D., Fujita, N., Tsuruo, T., Gauthier, R., Arguin, M., and Vachon, P.H. (2009). Intestinal epithelial cancer cell anoikis resistance: EGFR-mediated sustained activation of Src overrides Fak-dependent signaling to MEK/Erk and/or PI3-K/Akt-1. J Cell Biochem 107, 639-654.
Di Marco, E., Pierce, J.H., Fleming, T.P., Kraus, M.H., Molloy, C.J., Aaronson, S.A., and Di Fiore, P.P. (1989). Autocrine interaction between TGF alpha and the EGF-receptor: quantitative requirements for induction of the malignant phenotype. Oncogene 4, 831-838.
Dowse, T.J., Pascall, J.C., Brown, K.D., and Soldati, D. (2005). Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol 35, 747-756.
Dutt, A., Canevascini, S., Froehli-Hoier, E., and Hajnal, A. (2004). EGF signal propagation during C. elegans vulval development mediated by ROM-1 rhomboid. PLoS Biol 2, e334.
Folkman, J., and Moscona, A. (1978). Role of cell shape in growth control. Nature 273, 345-349.
Frisch, S.M., and Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124, 619-626.
Gallio, M., Sturgill, G., Rather, P., and Kylsten, P. (2002). A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc Natl Acad Sci U S A 99, 12208-12213.
Giannoni, E., Fiaschi, T., Ramponi, G., and Chiarugi, P. (2009). Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals. Oncogene 28, 2074-2086.
Graham, J., Muhsin, M., and Kirkpatrick, P. (2004). Cetuximab. Nat Rev Drug Discov 3, 549-550.
Guan, J.L., and Shalloway, D. (1992). Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358, 690-692.
Guy, P.M., Platko, J.V., Cantley, L.C., Cerione, R.A., and Carraway, K.L., 3rd (1994). Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci U S A 91, 8132-8136.
Hall, P.A., Coates, P.J., Ansari, B., and Hopwood, D. (1994). Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 107 ( Pt 12), 3569-3577.
Herbst, R.S., Fukuoka, M., and Baselga, J. (2004). Gefitinib--a novel targeted approach to treating cancer. Nat Rev Cancer 4, 956-965.
Hisano, C., Tanaka, R., Fujishima, H., Ariyama, H., Tsuchiya, T., Tatsumoto, T., Mitsugi, K., Nakamura, M., and Nakano, S. (2003). Suppression of anoikis by v-Src but not by activated c-H-ras in human gallbladder epithelial cells. Cell Biol Int 27, 415-421.
Jost, M., Huggett, T.M., Kari, C., and Rodeck, U. (2001). Matrix-independent survival of human keratinocytes through an EGF receptor/MAPK-kinase-dependent pathway. Mol Biol Cell 12, 1519-1527.
Kataoka, H. (2009). EGFR ligands and their signaling scissors, ADAMs, as new molecular targets for anticancer treatments. J Dermatol Sci 56, 148-153.
Koonin, E.V., Makarova, K.S., Rogozin, I.B., Davidovic, L., Letellier, M.C., and Pellegrini, L. (2003). The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol 4, R19.
Kyula, J.N., Van Schaeybroeck, S., Doherty, J., Fenning, C.S., Longley, D.B., and Johnston, P.G. (2010). Chemotherapy-induced activation of ADAM-17: a novel mechanism of drug resistance in colorectal cancer. Clin Cancer Res 16, 3378-3389.
Lemberg, M.K., and Freeman, M. (2007). Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res 17, 1634-1646.
Lemberg, M.K., Menendez, J., Misik, A., Garcia, M., Koth, C.M., and Freeman, M. (2005). Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J 24, 464-472.
Lohi, O., Urban, S., and Freeman, M. (2004a). Diverse Substrate Recognition Mechanisms for Rhomboids: Thrombomodulin Is Cleaved by Mammalian Rhomboids. Current Biology 14, 236-241.
Lohi, O., Urban, S., and Freeman, M. (2004b). Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr Biol 14, 236-241.
Lynch, T.J., Bell, D.W., Sordella, R., Gurubhagavatula, S., Okimoto, R.A., Brannigan, B.W., Harris, P.L., Haserlat, S.M., Supko, J.G., Haluska, F.G., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350, 2129-2139.
Maegawa, S., Ito, K., and Akiyama, Y. (2005). Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44, 13543-13552.
Mayer, U., and Nusslein-Volhard, C. (1988). A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo. Genes Dev 2, 1496-1511.
Mendelsohn, J. (1997). Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 3, 2703-2707.
Meredith, J.E., Jr., Fazeli, B., and Schwartz, M.A. (1993). The extracellular matrix as a cell survival factor. Mol Biol Cell 4, 953-961.
Mizukami, Y., Nonomura, A., Noguchi, M., Taniya, T., Koyasaki, N., Saito, Y., Hashimoto, T., Matsubara, F., and Yanaihara, N. (1991). Immunohistochemical study of oncogene product ras p21, c-myc and growth factor EGF in breast carcinomas. Anticancer Res 11, 1485-1494.
Modjtahedi, H., and Dean, C. (1994). The receptor for EGF and its ligands - expression, prognostic value and target for therapy in cancer (review). Int J Oncol 4, 277-296.
Mosesson, Y., and Yarden, Y. (2004). Oncogenic growth factor receptors: implications for signal transduction therapy. Semin Cancer Biol 14, 262-270.
Moss, M.L., and Bartsch, J.W. (2004). Therapeutic benefits from targeting of ADAM family members. Biochemistry 43, 7227-7235.
Nakagawa, T., Guichard, A., Castro, C.P., Xiao, Y., Rizen, M., Zhang, H.Z., Hu, D., Bang, A., Helms, J., Bier, E., et al. (2005). Characterization of a human rhomboid homolog, p100hRho/RHBDF1, which interacts with TGF-alpha family ligands. Dev Dyn 233, 1315-1331.
Normanno, N., Bianco, C., De Luca, A., and Salomon, D.S. (2001). The role of EGF-related peptides in tumor growth. Front Biosci 6, D685-707.
Osborne, C.K., and Arteaga, C.L. (1990). Autocrine and paracrine growth regulation of breast cancer: clinical implications. Breast Cancer Res Treat 15, 3-11.
Paez, J.G., Janne, P.A., Lee, J.C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F.J., Lindeman, N., Boggon, T.J., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497-1500.
Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., et al. (2004). EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101, 13306-13311.
Pascall, J.C., and Brown, K.D. (2004a). Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDL2. Biochemical and Biophysical Research Communications 317, 244-252.
Pascall, J.C., and Brown, K.D. (2004b). Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDL2. Biochem Biophys Res Commun 317, 244-252.
Polakowska, R.R., Piacentini, M., Bartlett, R., Goldsmith, L.A., and Haake, A.R. (1994). Apoptosis in human skin development: morphogenesis, periderm, and stem cells. Dev Dyn 199, 176-188.
Rather, P.N., Ding, X., Baca-DeLancey, R.R., and Siddiqui, S. (1999). Providencia stuartii genes activated by cell-to-cell signaling and identification of a gene required for production or activity of an extracellular factor. J Bacteriol 181, 7185-7191.
Re, F., Zanetti, A., Sironi, M., Polentarutti, N., Lanfrancone, L., Dejana, E., and Colotta, F. (1994). Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol 127, 537-546.
Reginato, M.J., Mills, K.R., Paulus, J.K., Lynch, D.K., Sgroi, D.C., Debnath, J., Muthuswamy, S.K., and Brugge, J.S. (2003). Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol 5, 733-740.
Riemenschneider, M.J., Bell, D.W., Haber, D.A., and Louis, D.N. (2005). Pulmonary adenocarcinomas with mutant epidermal growth factor receptors. N Engl J Med 352, 1724-1725.
Riese, D.J., 2nd, and Stern, D.F. (1998). Specificity within the EGF family/ErbB receptor family signaling network. Bioessays 20, 41-48.
Sakai, H., Kobayashi, Y., Sakai, E., Shibata, M., and Kato, Y. (2000). Cell adhesion is a prerequisite for osteoclast survival. Biochem Biophys Res Commun 270, 550-556.
Sanderson, M.P., Dempsey, P.J., and Dunbar, A.J. (2006). Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 24, 121-136.
Scaltriti, M., and Baselga, J. (2006). The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 12, 5268-5272.
Schlaepfer, D.D., Hanks, S.K., Hunter, T., and van der Geer, P. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786-791.
Sieg, D.J., Hauck, C.R., Ilic, D., Klingbeil, C.K., Schaefer, E., Damsky, C.H., and Schlaepfer, D.D. (2000). FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2, 249-256.
Sporn, M.B., and Todaro, G.J. (1980). Autocrine secretion and malignant transformation of cells. N Engl J Med 303, 878-880.
Stevenson, L.G., Strisovsky, K., Clemmer, K.M., Bhatt, S., Freeman, M., and Rather, P.N. (2007). Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc Natl Acad Sci U S A 104, 1003-1008.
Tamada, Y., Takama, H., Kitamura, T., Yokochi, K., Nitta, Y., Ikeya, T., and Matsumoto, Y. (1994). Identification of programmed cell death in normal human skin tissues by using specific labelling of fragmented DNA. Br J Dermatol 131, 521-524.
Tateishi, M., Ishida, T., Mitsudomi, T., Kaneko, S., and Sugimachi, K. (1990). Immunohistochemical evidence of autocrine growth factors in adenocarcinoma of the human lung. Cancer Res 50, 7077-7080.
Urban, S., and Freeman, M. (2003). Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol Cell 11, 1425-1434.
Urban, S., Lee, J.R., and Freeman, M. (2001). Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173-182.
Urban, S., Lee, J.R., and Freeman, M. (2002a). A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J 21, 4277-4286.
Urban, S., Schlieper, D., and Freeman, M. (2002b). Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr Biol 12, 1507-1512.
Urban, S., and Wolfe, M.S. (2005). Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc Natl Acad Sci U S A 102, 1883-1888.
Wang, Y., Guan, X., Fok, K.L., Li, S., Zhang, X., Miao, S., Zong, S., Koide, S.S., Chan, H.C., and Wang, L. (2008). A novel member of the Rhomboid family, RHBDD1, regulates BIK-mediated apoptosis. Cellular and Molecular Life Sciences 65, 3822-3829.
Wang, Y.N., Yamaguchi, H., Hsu, J.M., and Hung, M.C. (2010). Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene 29, 3997-4006.
Wasserman, J.D., Urban, S., and Freeman, M. (2000). A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signaling. Genes Dev 14, 1651-1663.
Wolfe, M.S. (2009). Intramembrane-cleaving proteases. J Biol Chem 284, 13969-13973.
Xie, Y., and Hung, M.C. (1994). Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem Biophys Res Commun 203, 1589-1598.
Yan, Z., Zou, H., Tian, F., Grandis, J.R., Mixson, A.J., Lu, P.Y., and Li, L.Y. (2008). Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Molecular Cancer Therapeutics 7, 1355-1364.
Yarden, Y., and Sliwkowski, M.X. (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2, 127-137.
Zoppi, N., Barlati, S., and Colombi, M. (2008). FAK-independent alphavbeta3 integrin-EGFR complexes rescue from anoikis matrix-defective fibroblasts. Biochim Biophys Acta 1783, 1177-1188.
Zou, H., Thomas, S.M., Yan, Z.W., Grandis, J.R., Vogt, A., and Li, L.Y. (2008). Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. The FASEB Journal 23, 425-432.
校內:2021-12-31公開