| 研究生: |
賽蔚雅 Setiawardhani, Widya Apriari Devita |
|---|---|
| 論文名稱: |
模擬探討粒子在微流道內電場及流場作用下之運動行為 Simulation of Particle Motion Induced by Electrokinetic and Hydrodynamic Flow Inside Microchannel |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 外文關鍵詞: | Dielectrophoresis, Hydrodynamic flow, Drift-diffusion dynamics |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Dielectrophoresis is one of the major AC electrokinetic phenomena which has been widely demonstrated in microfluidics research as a method to control and manipulate micro and nano-scale particles in liquid. Predicting the movement and behavior of particles under non-uniform AC electric fields by numerical modeling and simulation is important for the design of experiment devices.
In this study, we consider special conditions where the coupled dielectrophoresis (DEP) force and the hydrodynamic force contribute to the movement and behavior of particles in dielectrophoretic devices. Based on a drift-diffusion dynamics, we employ the Effective Medium Approximation (EMA) in order to include many particles in a system device. 2D simulation of mathematical model is adopted. We use two different channel geometry (non-rectangular and rectangular microchannel) and three different electrode arrangements (A, B and C) as a model device. In the first case we consider a microchannel with electrodes produce an AC electric field, filled with an incompressible and Newtonian suspending medium include many-particles within it. The second and the third case, the fluid and particles are introduced into the microchannel with and without an electric field applied, respectively.
At certain point evaluation for each of the configuration (A, B and C) when only the electric field applied, the highest amount of particles trapped is observed at the electrode edges in configuration A where the particle volume fraction φ = 0.59, whereas in configuration B and C are φ=0.54 and φ=0.53, respectively. When the hydrodynamic flow coupled with electrostatic force, at fluid velocity 20 µm/s the highest amount of particles trapped is observed in configuration A φ=0.61, whereas in configuration B and C are φ=0.55 and φ=0.52, respectively. When rectangular microchannel is used, the highest amount of particles trapped is observed in configuration A φ=0.59, whereas in configuration B and C are φ=0.48 and φ=0.5, respectively. In addition, for configuration C only, when the electrode gap is decreased from 40 µm to 20 µm, the highest amount of trapped particles observed is φ=0.62.
In conclusions, the geometry of the electrodes has significant effect on the DEP force and hence the particles motion. Moreover, the presence of the fluid flow affects the amount of particles trapped.
1. Pohl, H.A. and I. Hawk, Separation of living and dead cells by dielectrophoresis. Science, 1966. 152(3722): p. 647.
2. Fuhr, G., et al. Linear motion of dielectric particles and living cells in microfabricated structures induced by traveling electric fields. 1991: IEEE.
3. Gascoyne, P., et al. Manipulation of erythroleukemia cells using travelling electric fields. 1994: IEEE.
4. Becker, F. and X. Wang, The removal of human leukaemia cells from blood using interdigitated microelectrodes. Journal of Physics D: Applied Physics, 1994. 27: p. 2659.
5. Talary, M., et al., Electromanipulation and separation of cells using travelling electric fields. Journal of Physics D: Applied Physics, 1996. 29: p. 2198.
6. Gimsa, J., A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry, 2001. 54(1): p. 23-31.
7. Zheng, L., J.P. Brody, and P.J. Burke, Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosensors and Bioelectronics, 2004. 20(3): p. 606-619.
8. Huang, Y., et al., Electric manipulation of bioparticles and macromolecules on microfabricated electrodes. Analytical chemistry, 2001. 73(7): p. 1549-1559.
9. Müller, T., et al., Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces. Journal of Physics D: Applied Physics, 1996. 29: p. 340.
10. Morgan, H. and N.G. Green, Dielectrophoretic manipulation of rod-shaped viral particles. Journal of Electrostatics, 1997. 42(3): p. 279-293.
11. Green, N., et al., Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Physical review E, 2000. 61(4): p. 4011.
12. Pohl, H.A., The motion and precipitation of suspensoids in divergent electric fields. Journal of Applied Physics, 1951. 22(7): p. 869-871.
13. Pohl, H.A., Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. 1978: Cambridge University Press Cambridge.
14. Pohl, H.A., Some effects of nonuniform fields on dielectrics. Journal of Applied Physics, 1958. 29(8): p. 1182-1188.
15. Hughes, M.P., Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis, 2002. 23(16): p. 2569-2582.
16. Gascoyne, P.R.C. and J. Vykoukal, Particle separation by dielectrophoresis. Electrophoresis, 2002. 23(13): p. 1973-1983.
17. Kang, K.H., et al., Continuous separation of microparticles by size with Direct current dielectrophoresis. Electrophoresis, 2006. 27(3): p. 694-702.
18. Wang, D., M. Sigurdson, and C.D. Meinhart, Experimental analysis of particle and fluid motion in ac electrokinetics. Experiments in fluids, 2005. 38(1): p. 1-10.
19. Jones, T.B., Electromechanics of particles. 1995: Cambridge Univ Pr.
20. Wakizaka, Y., M. Hakoda, and N. Shiragami, Numerical simulation of electrode geometry and its arrangement of dielectrophoretic filter for separation of cells. Journal of chemical engineering of Japan, 2004. 37(7): p. 908-911.
21. Ghallab, Y. and W. Badawy, Sensing methods for dielectrophoresis phenomenon: from bulky instruments to lab-on-a-chip. Circuits and Systems Magazine, IEEE, 2004. 4(3): p. 5-15.
22. Wu, J., Interactions of electrical fields with fluids: laboratory-on-a-chip applications. Nanobiotechnology, IET, 2008. 2(1): p. 14-27.
23. Heeren, A., et al., Manipulation of micro-and nano-particles by electro-osmosis and dielectrophoresis. Microelectronic engineering, 2007. 84(5-8): p. 1706-1709.
24. DüRR, M., et al., Microdevices for manipulation and accumulation of micro and nanoparticles by dielectrophoresis. Electrophoresis, 2003. 24(4): p. 722-731.
25. Kua, C.H., et al., Modeling of dielectrophoretic force for moving dielectrophoresis electrodes. Journal of Electrostatics, 2008. 66(9-10): p. 514-525.
26. Cao, J., P. Cheng, and F. Hong, A numerical analysis of forces imposed on particles in conventional dielectrophoresis in microchannels with interdigitated electrodes. Journal of Electrostatics, 2008. 66(11-12): p. 620-626.
27. Oh, J., et al., Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel. Lab Chip, 2008. 9(1): p. 62-78.
28. Castellanos, A., et al., Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. Journal of Physics D: Applied Physics, 2003. 36: p. 2584.
29. Aldaeus, F., et al., Superpositioned dielectrophoresis for enhanced trapping efficiency. Electrophoresis, 2005. 26(22): p. 4252-4259.
30. Tathireddy, P., Y.H. Choi, and M. Skliar, Particle AC electrokinetics in planar interdigitated microelectrode geometry. Journal of Electrostatics, 2008. 66(11-12): p. 609-619.
31. Xiong, X., et al., Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Applied Physics Letters, 2007. 91: p. 063101.
32. Kadaksham, A.T.J., P. Singh, and N. Aubry, Dielectrophoresis of nanoparticles. Electrophoresis, 2004. 25(21 22): p. 3625-3632.
33. Kadaksham, J., P. Singh, and N. Aubry, Manipulation of particles using dielectrophoresis. Mechanics Research Communications, 2006. 33(1): p. 108-122.
34. Nicotra, O.E., A. La Magna, and S. Coffa, A mean field approach to many-particles effects in dielectrophoresis. Applied Physics Letters, 2008. 93: p. 193902.
35. Landauer, R., The electrical resistance of binary metallic mixtures. Journal of Applied Physics, 2009. 23(7): p. 779-784.
36. Norris, A., P. Sheng, and A. Callegari, Effective medium theories for two phase dielectric media. Journal of Applied Physics, 2009. 57(6): p. 1990-1996.
37. Nicotra, O., A. La Magna, and S. Coffa, Particle-chain formation in a dc dielectrophoretic trap; a reaction-diffusion approach. Applied Physics Letters, 2009. 95: p. 073702.
38. Pertsov, A. and E. Zaitseva, DISCOVERY OF ELECTROKINETIC PHENOMENA IN MOSCOW UNIVERSITY.
39. Yang, C., et al., Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. Journal of colloid and interface science, 2004. 275(2): p. 679-698.
40. Pohl, H.A., Dielectrophoresis. 1978: Cambridge University Press, Cambridge.
41. Sun, T., H. Morgan, and N.G. Green, Analytical solutions of ac electrokinetics in interdigitated electrode arrays: Electric field, dielectrophoretic and traveling-wave dielectrophoretic forces. Physical review E, 2007. 76(4): p. 046610.
42. Morgan, H. and N.G. Green, AC electrokinetics: colloids and nanoparticles. 2003.
43. Velev, O.D. and K.H. Bhatt, On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft matter, 2006. 2(9): p. 738-750.
44. Bhatt, K.H. and O.D. Velev, Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir, 2004. 20(2): p. 467-476.
45. Chang, S., et al., Remotely powered distributed microfluidic pumps and mixers based on miniature diodes. Lab on a Chip, 2008. 8(1): p. 117.
46. Yang, K. and J. Wu, Investigation of microflow reversal by ac electrokinetics in orthogonal electrodes for micropump design. Biomicrofluidics, 2008. 2: p. 024101.
47. Li, P., K. Shi, and Z. Liu, Manipulation and spectroscopy of a single particle by use of white-light optical tweezers. Optics letters, 2005. 30(2): p. 156-158.
48. Ashkin, A., History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. Selected Topics in Quantum Electronics, IEEE Journal of, 2000. 6(6): p. 841-856.
49. Blideran, M.M., et al., A mechanically actuated silicon microgripper for handling micro-and nanoparticles. Microelectronic engineering, 2006. 83(4-9): p. 1382-1385.
50. Thelander, C. and L. Samuelson, AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes. Nanotechnology, 2002. 13: p. 108.
51. Ramachandran, T., et al., Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope. Nanotechnology, 1998. 9: p. 237.
52. Takekawa, T., K. Nakagawa, and G. Hashiguchi. The AFM tweezers: Integration of a tweezers function with an AFM probe. 2005: IEEE.
53. Ramsey, J.M. and A. van den Berg. Micro Total Analysis Systems 2001.
54. Morgan, H. and T. Sun, AC electrokinetic particle manipulation in microsystems. Microfluidics Based Microsystems, 2010: p. 481-506.
55. Pethig, R., Dielectrophoresis: using inhomogeneous AC electrical fields to separate and manipulate cells. Critical reviews in biotechnology, 1996. 16(4): p. 331-348.
56. Hughes, M.P., AC electrokinetics: applications for nanotechnology. Nanotechnology, 2000. 11: p. 124.
57. Strässler, S. and C. Kittel, Degeneracy and the order of the phase transformation in the molecular-field approximation. Physical Review, 1965. 139(3A): p. A758.
58. COMSOL, I. and C. Multiphisics, 3.5, User's Guide and Reference Guide. Burlington, USA: COMSOL, 2008.
59. Arnold, W., H. Schwan, and U. Zimmermann, Surface conductance and other properties of latex particles measured by electrorotation. Journal of Physical Chemistry, 1987. 91(19): p. 5093-5098.
60. Landau, L. and E. Lifshitz, Fluid Mechanics: Volume 6. 1987, Butterworth-Heinemann.
校內:2016-07-14公開