| 研究生: |
孫溢隆 Sun, Yi-Lung |
|---|---|
| 論文名稱: |
雙層功能梯度矩形板之力學及振動分析 Mechanics and Vibration Analysis of a Double-layered Functionally Graded Rectangular Plate |
| 指導教授: |
褚晴暉
Chue, Ching-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 功能梯度材料 、平板力學分析 、平板振動分析 、自然頻率 |
| 外文關鍵詞: | functionally graded material, mechanics of FGM plates, vibration analysis of FGM plates, natural frequency |
| 相關次數: | 點閱:128 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在固體力學以及平板力學之基礎,本文討論上層為功能梯度材料(FGM),下層為均質材料的雙層功能梯度矩形板之力學行為。首先,經由公式推導得到FGM平板之統御方程式,並求得四周皆為簡支撐且承受均勻分佈負載的雙層FGM板之位移場和應力場。接著討論在同樣的邊界條件、外型尺寸且承受相同外力的情況下,改變FGM之類型、楊氏係數之比值、函數變化之參數,以及FGM與均質材料在平板中所佔的厚度比例,對於FGM平板之影響。
本文的第二部份是分析FGM平板的振動問題,先推導出FGM平板之振動統御方程式,求解任意邊界條件下之FGM平板的自然頻率,並使用有限元素軟體進行振動模態分析,加以驗證本文求解結果之正確性。另外,由求解自然頻率的過程中,整理並推導得到FGM平板與均質平板自然頻率之對應關係式,亦即能夠經由關係式,從均質板的自然頻率推得相同外型尺寸、邊界條件FGM板的自然頻率。最後舉出幾個典型的個案,證明該關係式之正確性。
Based on the elasticity theory, the mechanics together with the free vibration analysis of a double-layered rectangular plate is studied in this paper. The plate contains two layers with a functionally graded material (FGM) and homogeneous material, respectively. The closed-form solution of the simply supported plate subjected to uniform loading is obtained by Levy’s method. The effects of different FGM property types, ratio of Young’s modulus E2/E1, nonhomogeneous material parameter p, and the layer thickness ratio on the mechanical behavior of the plate will be emphasized.
In the case of a clamped-edge FGM plate, the natural frequencies are derived analytically and validated by the results obtained from finite element analysis. As a conclusion, the correspondence of the natural frequency between FGM plates and homogeneous plates expressed in an equation form is proved to be accurate.
[1] D. K. Jha, T. Kant and R. K. Singh, "A critical review of recent research on functionally graded plates", Composite Structures, vol. 96, pp. 833-849, 2013.
[2] S. H. Chi and Y. L. Chung, "Mechanical behavior of functionally graded material plates under transverse load—Part I: Analysis", International Journal of Solids and Structures, vol. 43, pp. 3657-3674, 2006.
[3] S. H. Chi and Y. L. Chung, "Mechanical behavior of functionally graded material plates under transverse load—Part II: Numerical results", International Journal of Solids and Structures, vol. 43, pp. 3675-3691, 2006.
[4] M. Batista, "Uniformly loaded rectangular thin plates with symmetrical boundary conditions", arXiv preprint arXiv:1001.3016, 2010.
[5] M. Bhandari and K. Purohit, "Analysis of functionally graded material plate under transverse load for various boundary conditions", IOSR Journal of Mechanical and Civil Engineering, vol. 10, pp. 46-55, 2014.
[6] A. W. Leissa, "The free vibration of rectangular plates", Journal of Sound and vibration, vol. 31, no. 3, pp. 257-293, 1973.
[7] Y. Xing and B. Liu, "Closed form solutions for free vibrations of rectangular Mindlin plates", Acta Mechanica Sinica, vol. 25, pp. 689-698, 2009.
[8] S. Abrate, "Free vibration, buckling, and static deflections of functionally graded plates", Composites Science and Technology, vol. 66, pp. 2383-2394, 2006.
[9] E. Eduard, Thin Plates and Shells: Theory, Analysis, and Applications, Marcel Dekker, New York, 2001.
[10] S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, Second Edition, McGraw Hill, New York, 1959.
[11] S. S. Rao and F. F. Yap, Mechanical vibrations, vol. 4, Addison-Wesley, New York, pp. 699-768, 1995.
[12] 褚晴暉與歐怡良,功能梯度材料之破壞力學分析,中華民國力學學會學術研討會,第115期,2006年。
[13] 戴孟賢,功能梯度矩形板承受均勻分佈力或集中力的解析解,成功大學機械工程所碩士論文,2014年。