簡易檢索 / 詳目顯示

研究生: 翁聖翔
Wong, Sheng-Shong
論文名稱: 氮化銦鎵奈米柱壓電奈米發電器之光壓電特性
Piezo-phototronic Effects of InGaN Nanorod Piezoelectric Nanogenerator
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 56
中文關鍵詞: 氮化銦鎵奈米柱奈米發電器光壓電效應
外文關鍵詞: InGaN, nanorod, Nanogenerator, Piezo-phototronics
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用分子束磊晶系統(MBE)在Si(111)基板成長氮化銦鎵奈米柱,磊晶過程中因氮化銦鎵奈米柱熱導率不高導致奈米柱由底到底銦含量從5%漸增至約45%。氮化銦鎵奈米柱本身具有自發極化與壓電極化場,在合金含量漸變情況下產生極化場漸變,進而導致極化摻雜現象。在照光環境下氮化銦鎵奈米發電器吸收光子所產生的電子電洞對屏蔽掉磊晶過程所產生的極化漸變,降低極化摻雜,進而使奈米發電器輸出電壓電流上升。我們成功利用高輸出氮化銦鎵奈米發電器驅動液晶顯示器與發光二極體。

    We have grown InGaN nanorods on Si(111) substrate by using plasma-assisted molecular beam epitaxy(PA-MBE). The alloy composition of In increased lineally from 5% to 45% from bottom to top owing to low thermal conductivity of InGaN nanorod during growth process. According to the spontaneous and piezoelectric polarization properties in III-Nitrides semiconductor, graded alloy composition leads to polarization grading effect and further re-sults in polarization-induced doping effect. Therefore, free carriers in InGaN nanorods will increase. In general, free carriers move along with electric field and further reduce pie-zo-potential. However, under light illumination, a large number of electron-hole pairs are generated in the InGaN based nanogenerator (NG), these electron-hole pairs will be separated due to electric field in InGaN nanorods and further decrease built-in field in InGaN system. As a result, polarization grading effect will be slightly decrease and further lowering polari-zation-induced doping effect. Thus, the output of InGaN based nanogenerator is slightly in-creased under light illumination. At the end of this work, we utilize InGaN besed nanogener-ator to power LCD and LED. It shows the potential of being a green energy device.

    第一章:序論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 奈米發電機 2 1.2.2 氮化銦鎵基本性質與應用 3 第二章:實驗儀器及原理 6 2.1 電漿輔助式分子束磊晶(Plasma-assisted Molecular Beam Epitaxy, PA-MBE) 6 2.2 反射式高能電子繞射儀(Reflection High Energy Electron Diffraction, RHEED) 7 2.3 掃描電子顯微鏡(Scanning Tunneling Microscope, SEM) 8 2.4 旋轉塗佈儀(Spin Coater) 9 2.5 微光激發光譜儀(Micro-PL Spectrometer) 10 2.7 能量分散光譜儀(Energy Dispersive Spectroscopy, EDS) 11 2.6 低雜訊電壓、電流放大器、示波器 12 2.7 多功能電源電錶(Keithley 2400) 13 2.8 X-ray 光電子能譜學(X-ray Photoemission Spectroscopy, XPS) 14 2.8.1 光電子能譜學的原理 14 2.8.2 同步輻射光源(Synchrotron-Radiation, SR) 15 第三章:實驗方法 17 3.1 基板選擇與清潔 17 3.2 氮化銦鎵奈米柱成長 19 3.3 奈米發電機製作 20 第四章:實驗結果與分析 21 4.1 氮化銦鎵奈米柱的反射式高能量電子繞射圖(RHEED) 21 4.2 氮化銦鎵奈米柱電子顯微鏡影像 22 4.3 氮化銦鎵奈米柱形貌分析 23 4.4 Si基板與氮化鎵的X-ray光電子能譜分析 25 4.5光致發光能譜(Photoluminescence Spectrum, PL) 26 4.6 能量分散光譜儀(Energy Dispersive Spectroscopy, EDS) 27 4.7 氮化銦鎵奈米柱在照光下的電學特性 28 4.8 氮化銦鎵奈米發電機 32 4.8.1 氮化銦鎵奈米發電機輸出值 33 4.8.2 氮化銦鎵奈米發電機能帶模型 34 4.8.3 奈米發電機整流輸出值與負載測試 35 4.9 氮化銦鎵奈米發電機在照光下的輸出行為 40 4.9.1 氮化銦鎵奈米發電機在照光下的輸出分析 42 4.10 新型設計高輸出氮化銦鎵奈米發電機 48 4.10.1 透明導電玻璃奈米發電器 49 4.10.2 透明導電玻璃奈米發電器照光下輸出行為 50 4.10.3 間隔透光奈米發電器 52 4.10.4 間隔透光奈米發電器照光下輸出行為 53 4.11 奈米發電器的應用 54 第五章:結論與未來發展 55

    [1] Zhong Lin Wang and Jinhui Song, Science. 2006 Apr 14;312(5771):242-6.
    [2] S. Gwo, Y.J. Lu, H. W. Lin, C. T. Kuo, C. L. Wu, M.Y. Lu, L.J, Chen. Semiconduc-tors and Semimetals 96, 341-384 (2017)
    [3] https://ned.ipac.caltech.edu/level5/Sept03/Li/Li4.html.
    [4] Prof. Dr. Karin Jacobs, Ultra High Vacuum Lab, Saarland University.
    [5] 李培瑋. 國立成功大學物理所碩士畢業論文(2010).
    [6] 國家同步輻射中心網站.
    [7] Vajpeyi AP1, Ajagunna AO, Tsagaraki K, Androulidaki M, Georgakilas A. Nano-technology. 2009 Aug 12;20(32):325605.
    [8] Xue. X, Nie. Y, He. B, Xing. L, Zhang. Y, Wang. ZL. Nanotechnology. 2013 Jun 7;24(22):225501.
    [9] Chao-Hung Wang , Wei-Shun Liao , Zong-Hong Lin , Nai-Jen Ku , Yi-Chang Li ,
    Yen-Chih Chen , Zhong-Lin Wang , and Chuan-Pu Liu. Adv. Energy Mater. 2014, June 27;(16): 1400392
    [10] Thanh Toan Pham,a Keun Young Lee,a Ju-Hyuck Lee,b Kwon-Ho Kim,a
    Kyung-Sik Shin,a Manoj K. Gupta,a Brijesh Kumara and Sang-Woo Kim*. En-ergy Environ. Sci., 2013, 6,841
    [11] Debdeep Jena, Sten Heikman, Daniel Green, Dario Buttari, Robert Coffie, Huili Xing, Stacia Keller, Steve DenBaars, James S. Speck, and Umesh K. Mishra. APL.2002 Oct. 8 vol 81, number 23
    [12] John Simon, Vladimir Protasenko, Chuanxin Lian, Huili Xing, Debdeep Jena*. Science, 1 January 2010, Vol 327.

    QR CODE