| 研究生: |
高德威 Kao, De-Wei |
|---|---|
| 論文名稱: |
利用多種薄膜–質量系統進行聲音與振動抑制 Sound and Vibration Suppression Using Various Membrane–Mass Systems |
| 指導教授: |
陳蓉珊
Chen, Jung-San |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 薄膜型超穎材料 、局部共振 、多頻帶隙 、減振 、降噪 |
| 外文關鍵詞: | membrane-type metamaterials, local resonance, multi-frequency bandgap, vibration reduction, noise attenuation |
| 相關次數: | 點閱:11 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文系統性地綜述了薄膜型超材料在隔聲與振動控制應用中的最新研究進展。首先,在聲學部分建構理論模型,針對兩種不同形狀的質量體(弧形質量體和片狀質量體),深入探討其非對稱的物理機制,並分析各種參數組合對聲學損失的影響。
其次在振動方面,本研究重點揭示了與相同重量的集中質量體結構相比,方框形質量體(Square Frame-Shaped Mass)能更有效地產生寬廣且導致波衰減的頻段。隨後提出了一個可行的數學模型,成功預測了承受張力的彈性薄膜及附加於薄膜表面的多個ARCH-MASS的局部共振系統,並準確預估該局部共振系統的第一和第二個初始頻率,此外,本文所提出的局部共振系統能將有效帶隙頻率移至300 Hz以下,通過調整ARCH-MASS的幾何參數(如厚度、寬度和位置),甚至增加ARCH-MASS的數量,該理論均能有效預測帶隙的初始頻率,顯示出所提出數學模型的準確性。
最後我們提出了一種新型薄膜超材料板,其結構包含兩個不等重的質量體(M₁、M₂)。通過有限元素分析,獲得了該材料的頻散關係圖及有效質量密度分佈,並以此為基礎深入探討其彎曲波的傳遞特性。在研究中,通過調整質量體M₁的位置,成功調控了局部結構的模態行為,從而實現了帶隙位置的可控調節。通過振動實驗對理論模型進行驗證,實驗結果與有限元素(FE)分析結果高度吻合,充分證明了該超材料板在多頻率振動衰減抑制方面的潛在應用價值。
以上研究不僅為聲學和振動超材料的理論基礎提供了支持,也為其在實際應用中的推廣開辟了新的思路與方法。
This thesis provides a systematic review of recent advances in the application of membrane-type metamaterials for sound insulation and vibration control. In the acoustics section, a theoretical model is established to investigate two distinct mass shapes—arched masses and plate-type masses—while focusing on the asymmetric physical mechanisms and analyzing the effects of various parameter combinations on acoustic loss.
In the vibration section, the study reveals that, compared with structures using concentrated masses of equal weight, square frame-shaped masses are more effective in generating broad frequency ranges that lead to wave attenuation. A feasible mathematical model is subsequently proposed to predict the local resonant system of a tensioned elastic membrane with multiple arc masses attached to its surface. The model accurately estimates the first and second onset frequencies of the local resonant system. Notably, the proposed local resonant system can shift the effective bandgap frequency to below 300 Hz. By adjusting the geometric parameters of the arc mass (such as thickness, width, and position) or increasing the number of arc mass units, the model effectively predicts the onset frequencies of the bandgap, thus demonstrating its accuracy.
Finally, we propose a novel membrane-type metamaterial plate comprising two masses of unequal weight (M1 and M2). Using finite-element analysis (FEA), the dispersion curves and effective mass density distribution of the material are obtained, forming the basis for an in-depth examination of its flexural wave propagation characteristics. By adjusting the position of mass M1, the modal behavior of the local structure is successfully tuned, thereby enabling controllable adjustment of the bandgap location. Theoretical predictions are validated through vibration experiments, with results showing strong agreement with FEA outcomes. This confirms the potential of this metamaterial plate for multi-frequency vibration attenuation.
These findings not only provide theoretical support for acoustic and vibration metamaterials but also offer new perspectives and methods for their practical implementation.
[1] M. S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Physical Review Letters, 71(13), 2022-2025 (1993)
[2] M. S. Kushwaha, P. Halevi, “Band-gap engineering in periodic elastic composites,” Applied Physics Letters, 64(9), 1085-1087 (1994)
[3] M. S. Kushwaha, P. Halevi, G. Martínez, L. Djafari-Rouhani, B. Dobrzynski,“Theory of acoustic band structure of periodic elastic composites,” Physical Review B, 49(2), 2313-2322 (1994)
[4] X. Zhang, T. Jackson, E. Lafond, P. Deymier, J. Vasseur, “Evidence of surface acoustic wave band gaps in the phononic crystals created on thin plates,” Applied Physics Letters, 88(4), 041911, (2006)
[5] M. M. Sigalas, E. N. Economou, “Elastic and acoustic wave band structure,” Journal of Sound and Vibration, 158(2), 377-382 (1992)
[6] E. N. Economou, M. Sigalas, “Stop bands for elastic waves in periodic composite materials,” The Journal of the Acoustical Society of America, 95(4), 1734-1740 (1994).
[7] J. O. Vasseur, P. A. Deymier, G. Frantziskonis, G. Hong, B. Djafari-Rouhani, L.Dobrzynski, “Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media,” Journal of Physics: Condensed Matter, 10, 6051-6064 (1998)
[8] T. Suzuki, P. K. L. Yu, “Complex elastic wave band structures in three dimensional periodic elastic media,” Journal of the Mechanics and Physics of Solids, 46(1), 115-138 (1998)
[9] M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos, N. Garcia, “Sound Attenuation of Membranes Loaded with Bandwidth broadening for transmission loss of acoustic waves using,” Physical Review Letters, 82(15), 3054-3057 (1999)
[10] S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, P. Sheng, “Ultrasound tunneling through 3D phononic crystals,” Physical Review Letters, 88(10), 104301 (2002).
[11] A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude, “Complete band gaps in two-dimensional phononic crystal slabs,” Physical Review E, 74, 046610 (2006).
[12] C. Croenne, E. J. S. Lee, H. Hu, J. H. Page, “Band gaps in phononic crystals: Generation mechanisms and interaction effects,” AIP Advances, 1, 041401 (2011).
[13] P. Ji, W. Hu, J. Yang, “Development of an acoustic filter for parametric loudspeaker using phononic crystals,” Ultrasonics, 67, 160-167 (2016).
[14] H. W. Dong, Y. S. Wang, C. Zhang, “Inverse design of high-Q wave filtersin two-dimensional phononic crystals by topology optimization,” Ultrasonics, 76, 109-124 (2017).
[15] E. Panahi, A. Hosseinkhani, M. F. Khansanami, D. Younesian, M. Ranjbar, “Novel cross shape phononic crystals with broadband vibration wave attenuation characteristic: Design, modeling and testing,” Thin-Walled Structures, 163, 107665 (2021).
[16] D. J. Mead, “Free wave propagation in periodically supported, infinite beams,” Journal of Sound and Vibration, 11(2), 181-97(1970).
[17] G. S. Gupta, “Natural flexural waves and the normal modes of periodically-supported beams and plates,” Journal of Sound and Vibration, 13(1), 89-101(1970).
[18] D. J. Mead, “A new method of analyzing wave propagation in periodic structures; Applications to periodic timoshenko beams and stiffened plates,” Journal of Sound and Vibration, 104(1), 9-27(1986).
[19] S. Y. Lee, H. Y. Ke, M. J. Kao, “ Flexural waves in a periodic beam,” Journal of Applied Mechanics, 57(3), 779-83(1990).
[20] D. J. Mead, “Wave propagation in continuous periodic structures: research contributions from Southampton 1964–1995,” Journal of Sound and Vibration, 190(3), 495-524(1996).
[21] D. M. Photiadis, “Wave mixing effects on a periodically ribbed cylindrical shell,” Journal of Vibration and Acoustics, 118(1), 100-6(1996).
[22] M. Ruzzene, L. Mazzarella, P. Tsopelas, F. Scarpa, “Wave propagation in sandwich plates with periodic auxetic core,” Journal of Intelligent Material Systems and Structures, 13(9), 587-97(2002).
[23] M. Ruzzene, P. Tsopelas, “Control of wave propagation in sandwich plate row with periodic honeycomb core,” Journal of Engineering Mechanics 129(9), 975(2003).
[24] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, “Locally resonant sonic material,” Science, 289(5485), 1734-1736(2000).
[25] Y. Xiao, J. Wen, X. Wen, “Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators,” Journal of Sound and Vibration, 331(25), 5408-5423 (2012).
[26] Y. Li, L. Zhu, T. Chen, “Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation,” Ultrasonics 73, 34-42(2017).
[27] Z. Liu, C. T. Chan, P. Sheng, “Analytic model of phononic crystals with local resonances,” Physical Review B, 71(1), 014103-8(2005).
[28] M. Hirsekorn, P. P. Delsanto, N. K. Batra, P. Matic, “Modelling and simulation of acoustic wave propagation in locally resonant sonic materials,” Ultrasonics, 42(1-9), 231-235(2004).
[29] Z. Liu, C. T. Chan, P. Shang, “Three-component elastic wave band-gap material,” Physical Review B, 65, 165116-6(2002).
[30] J. S. Chen, B. Sharma, C. T. Sun, “Dynamic behaviour of sandwich structure containing spring-mass resonators,” Composite Structures, 93(8), 2120-5(2011).
[31] Y. Xiao, J. Wen, X. Wen, “Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators,” New Journal of Physics, 14(5), 033042-20(2012).
[32] L. Liao, I. H. Mahmoud, “Wave motion in periodic flexural beams and characterization of the transition between brag scattering and local resonance,” Journal of Applied Mechanics, 79(1), 011003-17(2012).
[33] Y. Xiao, J. Wen, X. Wen, “Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators,” Journal of Physics D: Applied Physics, 45(19), 195401-12(2012).
[34] P. F. Pai, H. Peng, S. Jiang, “Acoustic metamaterial beams based on multi-frequency vibration absorbers,” International Journal of Mechanical Sciences, 79(18), 195-205(2014).
[35] J. S. Chen, S. M Tsai, “Sandwich structures with periodic assemblies on elastic foundation under moving loads,” Journal of Vibration and Control, 22(10), 2519-29(2016).
[36] J. S. Chen, Y. J. Huang, “Wave propagation in sandwich structures with multiresonators,” Journal of Vibration and Acoustics, 138(4), 041009(2016).
[37] H. Chen, X. P. Li, Y. Y. Chen, G. L. Huang, “Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators,” Ultrasonics, 76, 99-108(2017).
[38] C. Sugino, Y. Xia, S. Leadenham, M. Ruzzeneand, A. Erturk, “A general theory for bandgap estimation in locally resonant metastructures,” Journal of Sound and Vibration, 406, 104-23(2017).
[39] S. Zouari, J. Brocail, J. M. Genevaux, “Flexural wave band gaps in metamaterial plates: A numerical and experimental study from infinite to finite models,” Journal of Sound and Vibration, 435, 246-263(2018).
[40] J. S. Chen, C. T. Sun, “Dynamic behavior of a sandwich beam with internal resonators,” Journal of Sandwich Structures & Materials, 13(4), 391-408(2011).
[41] E. J. P. Miranda Jr., J. M. C. Dos Santos, “Flexural wave band gap in multiresonator elastic metamaterial Timoshenko beams,” Wave Motion, 91, 102391-23(2019).
[42] J. S. Chen, T. Y. Chen, Y. C. Chang, “Metastructures with double-spiral resonators for low-frequency flexural wave attenuation,” Journal of Applied Physics, 130, 014901-10(2021).
[43] X. An, C. Lai, W. He, H. Fan, “Three-dimensional chiral meta-plate lattice structures for broad band vibration suppression and sound absorption,” Composites Part B, 224, 109232-10(2021)
[44] D. Yu, Y. Liu, H. Zhao, G. Wang, J. Qiu, “Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom,” Physical Review B, 73(6), 064301-5(2006).
[45] K. Lu, J. H. Wu, L. Jing, D. Guan, “Flexural vibration bandgaps in local resonance beam with a novel two-degree-of-freedom local resonance system,” The European Physical Journal Applied Physics, 77(2), 20501-8(2017).
[46] Y. Xiao, J. Wen, D. Yu, X. Wen, “Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms,” Journal of Sound and Vibration, 332, 867-893(2013).
[47] L. Sun, “Experimental investigation of vibration damper composed of acoustic metamaterials,” Applied Acoustics, 119, 101-107(2017).
[48] Z. Yang, J. Mei, M. Yang, N. H. Chan, P. Sheng, “Membrane type acoustic metamaterial with negative dynamic mass,” Physical Review Letters, 101(20), 204301-4(2008).
[49] Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, P. Sheng, “Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime,” Applied Physics Letters, 96(4), 041906-4(2010).
[50] F. Ma, J. H. Wu, M. Huang, “Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation,” The European Physical Journal Applied Physics, 71, 30504-8(2015).
[51] F. Ma, J. H. Wu,, M. Huang, W. Zhang, S. Zhang, “A purely flexible lightweight membrane-type acoustic metamaterial,” Journal of Physics D: Applied Physics, 48, 175105-7(2015).
[52] Z. Yang, J. Mei, M. Yang, N. H. Chan, P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Physical Review Letters, 101, 204301-220434 (2008).
[53] C. J. Naify, C. M. Chang, G. McKnight, S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials,” Journal of Applied Physics, 108(11), 114905(2010).
[54] Y. Zhang, J. Wen, Y. Xiao, X. Wen, J. Wang, “Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials,” Physics Letters A, 376, 1489-1494(2012).
[55] Y. Chen, G. Huang, X. Zhou, G. Hu, and C.-T. Sun, “Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model,” The Journal of the Acoustical Society of America, 136(6), 2926-2934(2014).
[56] C. J. Naify, C. M. Chang, G. McKnight, F. Scheulen, S. Nutt, “Membrane-type metamaterials: Transmission loss of multi-celled arrays,” Journal of Applied Physics, 109, 104902-10(2011).
[57] C. J. Naify, S. R. Nutt, “Scaling of membrane-type locally resonant acoustic metamaterial arrays,” The Journal of the Acoustical Society of America, 132(4), 2784-2792(2012).
[58] C. J. Naify, C.-M. Chang, G. McKnight, S. Nutt, “Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses,” Journal of Applied Physics, 110, 124903-9(2011).
[59] Y. Zhang, J. Wen, H. Zhao, D. Yu, L. Cai, X. Wen, “Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells,” Journal of Applied Physics, 114, 063515-5(2013).
[60] J. S. Chen, D. W. Kao, “Sound attenuation of membranes loaded with square frame-shaped masses,” Mathematical Problems in Engineering, 2016, 1740236-11(2016).
[61] Z. Lu, X. Yu, S. K. Lau, B. C. Khoo, F. Cui, “Membrane-type acoustic metamaterial with eccentric masses for broadband sound isolation,” Applied Acoustics, 157(1), 107003-12(2020).
[62] G. Zhou, J. Wu, K. Lu, “Broadband low-frequency membrane- type acoustic metamaterials with multi-state anti-resonances,” Applied Acoustics, 159, 15107078-11(2020).
[63] Y. Huang, M. Lv, W. Luo, H. Zhang, D. Geng, Q. Li, “Sound insulation properties of membrane-type acoustic metamaterials with petal-like split rings,” Journal of Physics D: Applied Physics, 55(4), 045104-9(2022).
[64] H. Huang, E. Cao, M. Zhao, S. Alamri, B. Li, “Spider web inspired lightweight membrane-type acoustic metamaterials for broadband low-frequency sound isolation,” Polymers, 13(7), 1146-17(2021).
[65] J. S. Chen, Y. B. Chen, H. W. Chen, Y. C. Yeh, “Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure,” Mater Res Express 3(10), 105801-10(2016).
[66] O. O. Akintoye, “An investigation on transmission loss of clamped doubled thin plate with added mass,” Journal of Computational and Applied Mechanics, 15(1), 15-26(2020).
[67] H. Nguyen, Q. Wu, J. Chen, Y. Yu, H. Chen, S. Tracy, “A broadband acoustic panel based on double-layer membrane-type metamaterials,” Applied Physics Letters 118(18), 184101-5(2021).
[68] H. Tian, X. Wang, Y. h. Zhou, “Theoretical model and analytical approach for a circular membrane–ring structure of locally resonant acoustic metamaterial,” Applied Physics A, 114(3), 985-990(2014).
[69] D. W. Kao, J. S. Chen, Y. H. Jhu, K. C. Lin, Y. J. Liang, “Membrane‑type acoustic metamaterials carrying asymmetric arc/platelet masses for sound insulation,” Journal of Vibration Engineering & Technologies, 12(1), 921-934(2024).
[70] H. Zhang, Y. Xiao, J. Wen, D. Yu, X. Wen, “Flexural wave band gaps in metamaterial beams with membrane-type resonators: theory and experiment,” Journal of Physics D: Applied Physics, 48(43), 435305-11(2015).
[71] M. Nouh, O. Aldraihem, A. Baz, “Wave propagation in metamaterial plates with periodic local resonances,” Journal of Sound and Vibration, 341, 53-73(2015).
[72] J. S. Chen, Y. J. Huang, I. T. Chien, “Flexural wave propagation in metamaterial beams containing membrane-mass structures,” International Journal of Mechanical Sciences, 131–132, 500-506(2017).
[73] J. S. Chen, I. T. Chen, “Dynamic behavior of a metamaterial beam with embedded membrane-mass structures,” Journal of Applied Mechanics, 84, 121007-7 (2017).
[74] C. Gao, D. Halim, X. Yi, “Study of bandgap property of a bilayer membrane-type metamaterial applied on a thin plate,” International Journal of Mechanical Sciences, 184, 105708-12(2020).
[75] D. W. Kao, J. S. Chen, Y. S. Wu, “Broadband wave attenuation using periodic membrane-frame structures,” Materials Research Express, 6(3), 035801-11(2019).
[76] D. W. Kao, J. S. Chen, Y. B. Chen, “Bandgap prediction for a beam containing membrane-arch-mass resonators,” Journal of Applied Physics, 132(24), 244902-12(2022).
[77] J. S. Chen, W. J. Su, Y. Cheng, W. C. Li, C. Y. Lin, “A metamaterial structure capable of wave attenuation and concurrent energy harvesting,” Journal of Intelligent Material Systems and Structures, 30(20), 2973-2981(2019).
[78] D. W. Kao, J. S. Chen, “Vibration reduction analysis of metamaterial plates with two different attached masses,” Journal of Applied Sound and Vibration, 16(1_2), 67-75 (2024).
校內:立即公開