簡易檢索 / 詳目顯示

研究生: 鄭耿閔
Cheng, Keng-MIng
論文名稱: 雙面不對稱球體之自組裝與其螢光共振能量轉移效應之研究
Self-assembly and FRET of Dye-functionalized Janus Particles
指導教授: 郭昌恕
Kuo, Changshu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 80
中文關鍵詞: 雙面不對稱球體自主裝螢光共振能量轉移光致發光
外文關鍵詞: Janus particle, Self-assembly, Fluorescence Resonance Energy Transfer, Photoluminescence
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文探討雙面不對稱球體的自發性自主裝及螢光共振能量轉移效應。雙面不對稱球體是以粒徑為500奈米之二氧化矽球體將其半球表面進行氨基改質,接著再接上稱為Marina blue的螢光染料,並與購買的100奈米之表面羧酸化聚丙烯腈微珠作自發性自組裝。這些聚丙烯腈奈米微珠已經預先帶有Chromeon 470之螢光染料並可以當作螢光共振能量轉移的受體物質,並同時以Marina blue作為螢光共振能量轉移的供體物質。球體在水溶液中的自主裝行為是由500奈米之帶有正電荷的不對稱球體與100奈米之帶有負電荷的聚丙烯腈微珠進行自組裝,自組裝後之粒徑大小可以利用動態光散射粒徑分析儀觀測,同時藉由自組裝後使供體與受體物質之間的距離縮短而引起螢光共振能量傳遞行為,其中距離是螢光共振能量傳遞最重要的參數。藉由螢光光譜測量激發與吸收光譜來驗證在球體的自組裝下能夠順利引起螢光共振能量傳遞。

    In this research work, asymmetric Janus particles were fabricated from the investigation of the self-assembly and the fluorescence resonance energy transfer (FRET). Janus particles cored with 500 nm silica colloids were functionalized with amino groups on one of their hemispheres, followed by the attachment with fluorescence dye, Marina Blue. These Janus particles in the submicron scale were carefully fabricated and characterized. Commercially-available polyacytlonitrile (PAN) particles with 100 nm in diameter and carboxylic surface-functionalities were employed as the self-assembly counterpart. These PAN particles were pre-loaded with another fluorescence dye, Chromeon 470, served as the FRET acceptor, while the Marina Blue Janus particles were utilized as the FRET donor. Self-assembly of these particles in an aqueous solution were initiated by the positively-charged asymmetric 500 nm Janus particles and the negatively-charged 100 nm PAN particles. The assembly and the cluster sizes were monitored by the dynamic light scattering. Meanwhile, the formation of the assembled clusters shortened the distance between the donor and acceptor, that was in fact the most crucial parameter for the FRET. Photoluminescence for both excitation and emission spectra indicated the successful FRET as these two particles process the self-assembly.

    致謝 I 中文摘要 II Abstract III Table of Contents IV List of Illustrations VII Chapter 1. Introduction 1 1.1. Janus particles and asymmetric micro- and nano- materials 1 1.1.1. Janus-like Materials 2 1.1.2. Fabrications of Janus Particles 6 1.1.3. One-dimensional Electrospun Fibers as Particle Embedding Substrates 15 1.1.4. Applications 18 1.2. Self-Assembly 22 1.2.1. Introduce to Self-assembly 22 1.2.2. Models of Self-Assembly 25 1.2.3. Self-assembly Simulations 30 1.2.4. Applications of Self-Assembly 31 1.3. Förster Resonance Energy Transfer 35 1.3.1. Mechanism and Applications 36 1.3.2. Assembly of Dye-functionalized Janus Particles 40 1.4. Research Motivations 41 Chapter 2. Experimental 43 2.1. Chemicals 43 2.2. Instruments Used in the Material Fabrication 45 2.3. Preparations of Dye-functionalized Janus Particles 47 2.3.1. Preparation of 500 nm Silica Particle Solution 47 2.3.2. Electrospinning of PMMA/P4VP Blend Fibers 47 2.3.3. Dipping Process of 500 nm Silica Particles 48 2.3.4. Standard Film Preparation 48 2.3.5. Heat Treatment Process (Thermal Embedding Process) 49 2.3.6. APS Modification Process 49 2.3.7. Polymer Fibers Dissolving Process 50 2.3.8. Dye Grafting Process 51 2.4. Analytical Instruments 52 2.4.1. UV-vis Spectrometer (UV-vis) 52 2.4.2. Photoluminescence Spectroscopy (PL) 52 2.4.3. Scanning Electron Microscopy (SEM) 54 2.4.4. Particle Size Distribution 54 2.4.5. Zeta Potential Analyzer 55 Chapter 3. Results and Discussions 56 3.1. Dye-functionalized Janus Particle 56 3.1.1. Amino Janus particle 56 3.1.2. Dye-functionalization 60 3.2. Self-assembling Behaviors of Janus Particles and Carboxylic Nanobeads 61 3.3. FRET Effect of Assembled Particles 64 3.3.1. FRET of Marina blue and Chromeon 470 nanobeads 64 3.3.2. FRET of Dye-functionalized JPs and Chromeon 470 nanobeads 68 Chapter 4. Conclusions 73 References 74

    1. Degennes, P. G., Soft Matter (Nobel Lecture). Angew. Chem.-Int. Edit. Engl. 1992, 31 (7), 842-845.
    2. Cho, I.; Lee, K. W., Morphology of Latex-particles Formed by Poly(methyl methacrylate)-seeded Emulsion Polymerization of Styrene. J. Appl. Polym. Sci. 1985, 30 (5), 1903-1926.
    3. Casagrande, C.; Fabre, P.; Raphael, E.; Veyssie, M., Janus Beads - Realization and Behavior at Water Oil Interfaces. Europhys. Lett. 1989, 9 (3), 251-255.
    4. Liu, Y. F.; Abetz, V.; Muller, A. H. E., Janus cylinders. Macromolecules 2003, 36 (21), 7894-7898.
    5. Ruhland, T. M.; Groschel, A. H.; Wather, A.; Muller, A. H. E., Janus Cylinders at Liquid-Liquid Interfaces. Langmuir : the ACS journal of surfaces and colloids 2011, 27 (16), 9807-9814.
    6. Walther, A.; Andre, X.; Drechsler, M.; Abetz, V.; Muller, A. H. E., Janus discs. Journal of the American Chemical Society 2007, 129 (19), 6187-6198.
    7. Walther, A.; Drechsler, M.; Muller, A. H. E., Structures of amphiphilic Janus discs in aqueous media. Soft Matter 2009, 5 (2), 385-390.
    8. Chen, Q. H.; Li, Q. Q.; Lin, J. H., Synthesis of Janus composite particles by the template of dumbbell-like silica/polystyrene. Mater. Chem. Phys. 2011, 128 (3), 377-382.
    9. Wang, Y. L.; Xu, H.; Qiang, W. L.; Gu, H. C.; Shi, D. L., Asymmetric Composite Nanoparticles with Anisotropic Surface Functionalities. J. Nanomater. 2009.
    10. Koo, H. Y.; Yi, D. K.; Yoo, S. J.; Kim, D. Y., A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials 2004, 16 (3), 274-277.
    11. Lin, C. C.; Liao, C. W.; Chao, Y. C.; Kuo, C., Fabrication and characterization of asymmetric Janus and ternary particles. ACS applied materials & interfaces 2010, 2 (11), 3185-3191.
    12. McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J., Patchy and multiregion janus particles with tunable optical properties. Nano letters 2010, 10 (2), 603-609.
    13. Ye, S.; Carroll, R. L., Design and Fabrication of Bimetallic Colloidal "Janus" Particles. ACS Appl. Mater. Interfaces 2010, 2 (3), 616-620.
    14. Smoukov, S. K.; Gangwal, S.; Marquez, M.; Velev, O. D., Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter 2009, 5 (6), 1285-1292.
    15. Berger, S.; Synytska, A.; Ionov, L.; Eichhorn, K.-J.; Stamm, M., Stimuli-Responsive Bicomponent Polymer Janus Particles by "Grafting from"/"Grafting to" Approaches. Macromolecules (Washington, DC, United States) 2008, 41 (24), 9669-9676.
    16. Wang, Y.; Hernandez, R. M.; Bartlett, D. J.; Bingham, J. M.; Kline, T. R.; Sen, A.; Mallouk, T. E., Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (25), 10451-10456.
    17. Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials 2006, 18 (9), 1152-1156.
    18. Hawker, C. J., 'Living' free radical polymerization: A unique technique for the preparation of controlled macromolecular architectures. Accounts Chem. Res. 1997, 30 (9), 373-382.
    19. Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32 (1), 93-146.
    20. Huang, W.-H., Field-induced and Spontaneous Self-assembly of Janus Particles. Department of Materials Science and Engineering,NCKU 2012.
    21. Xu, H.; Erhardt, R.; Abetz, V.; Muller, A. H. E.; Goedel, W. A., Janus micelles at the air/water interface. Langmuir : the ACS journal of surfaces and colloids 2001, 17 (22), 6787-6793.
    22. Walther, A.; Mueller, A. H. E., Janus particles. Soft Matter 2008, 4 (4), 663-668.
    23. Chen, T.; Chen, G.; Xing, S. X.; Wu, T.; Chen, H. Y., Scalable Routes to Janus Au-SiO(2) and Ternary Ag-Au-SiO(2) Nanoparticles. Chemistry of Materials 2010, 22 (13), 3826-3828.
    24. Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E. B.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15 (35-36), 3745-3760.
    25. Nisisako, T.; Torii, T., Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Advanced Materials 2007, 19 (11), 1489-1493.
    26. Nie, Z. H.; Li, W.; Seo, M.; Xu, S. Q.; Kumacheva, E., Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly. Journal of the American Chemical Society 2006, 128 (29), 9408-9412.
    27. Shepherd, R. F.; Conrad, J. C.; Rhodes, S. K.; Link, D. R.; Marquez, M.; Weitz, D. A.; Lewis, J. A., Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (21), 8618-8622.
    28. Roh, K. H.; Martin, D. C.; Lahann, J., Biphasic Janus particles with nanoscale anisotropy. Nature Materials 2005, 4 (10), 759-763.
    29. Roh, K. H.; Yoshida, M.; Lahann, J., Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir : the ACS journal of surfaces and colloids 2007, 23 (10), 5683-5688.
    30. Hong, L.; Jiang, S.; Granick, S., Simple method to produce Janus colloidal particles in large quantity. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (23), 9495-9499.
    31. Li, Z. F.; Lee, D. Y.; Rubner, M. F.; Cohen, R. E., Layer-by-layer assembled janus microcapsules. Macromolecules 2005, 38 (19), 7876-7879.
    32. Correa-Duarte, M. A.; Salgueirino-Maceira, V.; Rodriguez-Gonzalez, B.; Liz-Marzan, L. M.; Kosiorek, A.; Kandulski, W.; Giersig, M., Asymmetric functional colloids through selective hemisphere modification. Advanced Materials 2005, 17 (16), 2014-2018.
    33. Cayre, O. J.; Paunov, V. N., Contact angles of colloid silica and gold particles at air-water and oil-water interfaces determined with the gel trapping technique. Langmuir : the ACS journal of surfaces and colloids 2004, 20 (22), 9594-9599.
    34. Paunov, V. N.; Cayre, O. J., Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. Advanced Materials 2004, 16, 788-791.
    35. Cui, J. Q.; Kretzschmar, I., Surface-anisotropic polystyrene spheres by electroless deposition. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (20), 8281-8284.
    36. He, Y. J.; Li, K. S., Novel Janus Cu-2(OH)(2)CO3/CUS microspheres prepared via a Pickering emulsion route. Journal of colloid and interface science 2007, 306 (2), 296-299.
    37. Binsk, B. P.; Fletcher, P. D. I., Particles adsorbed at the oil-water interface: A theoretical comparison between spheres of uniform wettability and "Janus" particles. Langmuir : the ACS journal of surfaces and colloids 2001, 17 (16), 4708-4710.
    38. Zhu, M. W.; Li, Y. M.; Meng, T.; Zhan, P.; Sun, J.; Wu, J.; Wang, Z. L.; Zhu, S. N.; Ming, N. B., Controlled strain on a double-templated textured polymer film: a new approach to patterned surfaces with Bravais lattices and chains. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (17), 7248-7253.
    39. Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus particle synthesis and assembly. Adv Mater 2010, 22 (10), 1060-1071.
    40. Behrend, C. J.; Anker, J. N.; McNaughton, B. H.; Kopelman, R., Microrheology with modulated optical nanoprobes (MOONs). J. Magn. Magn. Mater. 2005, 293 (1), 663-670.
    41. Anthony, S. M.; Kim, M.; Granick, S., Single-particle tracking of janus colloids in close proximity. Langmuir : the ACS journal of surfaces and colloids 2008, 24 (13), 6557-6561.
    42. Honegger, T.; Lecarme, O.; Berton, K.; Peyrade, D., 4-D dielectrophoretic handling of Janus particles in a microfluidic chip. Microelectronic Engineering 2010, 87 (5-8), 756-759.
    43. Jiang, S.; Granick, S., Janus balance of amphiphilic colloidal particles. Journal of Chemical Physics 2007, 127 (16).
    44. Jiang, S.; Granick, S., Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir : the ACS journal of surfaces and colloids 2008, 24 (6), 2438-2445.
    45. Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S., Clusters of amphiphilic colloidal spheres. Langmuir 2008, 24 (3), 621-625.
    46. Cheung, D. L.; Bon, S. A. F., Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5 (20), 3969-3976.
    47. Liao, C.-W., Manipulative Self-Assembly Behaviors of Janus Particles. Department of Materials Science and Engineering,NCKU 2010.
    48. Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M., Self-assembly: from crystals to cells. Soft Matter 2009, 5 (6), 1110-1128.
    49. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295 (5564), 2418-2421.
    50. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D., Molecular Biology of the Cell. Garland: New York, 1994.
    51. Schwiebert, K. E.; Chin, D. N.; MacDonald, J. C.; Whitesides, G. M., Engineering the solid state with 2-benzimidazolones. Journal of the American Chemical Society 1996, 118 (17), 4018-4029.
    52. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D., Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293 (5532), 1119-1122.
    53. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B., Microdomain patterns from directional eutectic solidification and epitaxy. Nature 2000, 405 (6785), 433-437.
    54. Whitesides, G. M., Self-assembling Materials. Sci.Am. 1995, 273 (3), 146-149.
    55. Cheng, Y. J.; Wolkenhauer, M.; Bumbu, G. G.; Gutmann, J. S., A Facile Route to Reassemble Titania Nanoparticles Into Ordered Chain-like Networks on Substrate. Macromolecular Rapid Communications 2012, 33 (3), 218-224.
    56. Meshot, E. R.; Patel, K. D.; Tawfick, S.; Juggernauth, K. A.; Bedewy, M.; Verploegen, E. A.; De Volder, M. F. L.; Hart, A. J., Photoconductive Hybrid Films via Directional Self-Assembly of C60 on Aligned Carbon Nanotubes. Advanced Functional Materials 2012, 22 (3), 577-584.
    57. Olenyuk, B.; Whiteford, J. A.; Fechtenkotter, A.; Stang, P. J., Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 1999, 398 (6730), 796-799.
    58. Lehn, J.-M., NATO ASI Ser. Ser. E 1996, 320, 14.
    59. Olson, M. A.; Coskun, A.; Klajn, R.; Fang, L.; Dey, S. K.; Browne, K. P.; Grzybowski, B. A.; Stoddart, J. F., Assembly of Polygonal Nanoparticle Clusters Directed by Reversible Noncovalent Bonding Interactions. Nano letters 2009, 9 (9), 3185-3190.
    60. Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M., Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 2000, 404 (6779), 746-748.
    61. Sun, Z. H.; Ni, W. H.; Yang, Z.; Kou, X. S.; Li, L.; Wang, J. F., pH-controlled reversible assembly and disassembly of gold nanorods. Small 2008, 4 (9), 1287-1292.
    62. Si, S.; Raula, M.; Paira, T. K.; Mandal, T. K., Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination. ChemPhysChem 2008, 9 (11), 1578-1584.
    63. Fialkowski, M.; Bishop, K. J. M.; Klajn, R.; Smoukov, S. K.; Campbell, C. J.; Grzybowski, B. A., Principles and implementations of dissipative (dynamic) self-assembly. Journal of Physical Chemistry B 2006, 110 (6), 2482-2496.
    64. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382 (6592), 607-609.
    65. Glotzer, S. C., Some assembly required. Science 2004, 306 (5695), 419-420.
    66. Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y., Monodispersed colloidal spheres: Old materials with new applications. Advanced Materials 2000, 12 (10), 693-713.
    67. Whitesides, G., What Will Chemistry Do in The Next 20 Years. Angew. Chem.-Int. Edit. Engl. 1990, 29 (11), 1209-1218.
    68. Whitesides, G. M., The once and future nanomachine - Biology outmatches futurists' most elaborate fantasies for molecular robots. Sci.Am. 2001, 285 (3), 78-83.
    69. Madou, M., Fundamentals of Microfabrication. 1997.
    70. Boehringer, K. F., Fearing, R. S. & Goldberg, K. Y., The Handbook of Industrial Robotics. Wiley: New York, 1999; p 1045-1066.
    71. Maury, P.; Escalante, M.; Reinhoudt, D. N.; Huskens, J., Directed assembly of nanoparticles onto polymer-imprinted or chemically patterned templates fabricated by nanoimprint lithography. Advanced Materials 2005, 17 (22), 2718-2723.
    72. Jonas, U.; del Campo, A.; Kruger, C.; Glasser, G.; Boos, D., Colloidal assemblies on patterned silane layers. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (8), 5034-5039.
    73. Chen, K. M.; Jiang, X. P.; Kimerling, L. C.; Hammond, P. T., Selective self-organization of colloids on patterned polyelectrolyte templates. Langmuir : the ACS journal of surfaces and colloids 2000, 16 (20), 7825-7834.
    74. Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Auwarter, W.; Neppl, S.; Kern, K.; Brune, H.; Ruben, M.; Barth, J. V., Chiral kagome lattice from simple ditopic molecular bricks. Journal of the American Chemical Society 2008, 130 (35), 11778-11782.
    75. Giacometti, A.; Lado, F.; Largo, J.; Pastore, G.; Sciortino, F., Effects of patch size and number within a simple model of patchy colloids. Journal of Chemical Physics 2010, 132 (17).
    76. Doppelbauer, G.; Bianchi, E.; Kahl, G., Self-assembly scenarios of patchy colloidal particles in two dimensions. J. Phys.-Condes. Matter 2010, 22 (10).
    77. Liu, H. J.; Kumar, S. K.; Douglas, J. F., Self-Assembly-Induced Protein Crystallization. Physical Review Letters 2009, 103 (1).
    78. Chen, Q.; Whitmer, J. K.; Jiang, S.; Bae, S. C.; Luijten, E.; Granick, S., Supracolloidal reaction kinetics of Janus spheres. Science 2011, 331 (6014), 199-202.
    79. Chen, Q.; Bae, S. C.; Granick, S., Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469 (7330), 381-384.
    80. Chen, Q.; Diesel, E.; Whitmer, J. K.; Bae, S. C.; Luijten, E.; Granick, S., Triblock Colloids for Directed Self-Assembly. J. Am. Chem. Soc. 2011, 133 (20), 7725-7727.
    81. Whitelam, S.; Bon, S. A. F., Self-assembly of amphiphilic peanut-shaped nanoparticles. Journal of Chemical Physics 2010, 132 (7).
    82. Miller, W. L.; Cacciuto, A., Hierarchical self-assembly of asymmetric amphiphatic spherical colloidal particles. Phys. Rev. E 2009, 80 (2).
    83. Jenekhe, S. A.; Chen, X. L., Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 1999, 283 (5400), 372-375.
    84. Pregibon, D. C.; Toner, M.; Doyle, P. S., Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007, 315 (5817), 1393-1396.
    85. Lehmann, O.; Stuke, M., Laser-driven Movemetn of 3-dimensional Microstructures Generated by Laser Rapid Prototyping. Science 1995, 270 (5242), 1644-1646.
    86. Shepherd, R. F.; Panda, P.; Bao, Z.; Sandhage, K. H.; Hatton, T. A.; Lewis, J. A.; Doyle, P. S., Stop-Flow Lithography of Colloidal, Glass, and Silicon Microcomponents. Advanced Materials 2008, 20 (24), 4734-4739.
    87. Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 1948, 437, 55-75.
    88. Förster, T., Delocalized excitation and excitation transfer. In Modern Quantum Chemistry. Istanbul Lectures. Part III: Action of Light and Organic Crystals 3, Sinanoglu, O., Ed. Academic Press: New York and London, 1965; pp 93-137.
    89. Kasha, M., Characterization of Electronic Transitions in Complex Molecules. Discussions of the Faraday Society 1950, 9, 14-19.
    90. Schobel, U.; Egelhaaf, H.-J.; Brecht, A.; Oelkrug, D.; Gauglitz, G., New Donor-Acceptor Pair for Fluorescent Immunoassays by Energy Transfer. Bioconjugate Chem. 1999, 10, 1107-1114.
    91. Kurokawa, K.; Takaya, A.; Terai, K.; Fujioka, A.; Matsuda, M., Visualizing the signal transduction pathways in living cells with GFP-based FRET probes. Acta Histochem Cytochem 2004, 34.
    92. Terai, K.; Matsuda, M., Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO reports 2005, 6 (3), 251-255.

    無法下載圖示 校內:2023-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE