| 研究生: |
陳力涵 Chen, Li-Han |
|---|---|
| 論文名稱: |
血清素在嗎啡所誘導出的高血糖所扮演的角色之研究 Role of 5-Hydroxytryptamine in Morphine-induced Hyperglycemia in Rats |
| 指導教授: |
鄭瑞棠
Cheng, Tang-Juei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 血清素 、嗎啡 、高血糖 |
| 外文關鍵詞: | serotonin, hyperglycemia, morphine |
| 相關次數: | 點閱:136 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
嗎啡是由鴉片提煉的一種生物鹼,經由腦內的作用而產生鎮靜與止痛效果。文獻指出嗎啡與血清素皆會造成血糖上升。然而,血清素是否參與嗎啡所造成的升糖作用,目前仍未清楚。因此,本研究目的欲探討血清素在嗎啡所誘導產生高血糖時所扮演的角色。結果顯示以靜脈注射大白鼠嗎啡或血清素之後,血糖皆有顯著增加的現象,此現象在腎上腺摘除或脊髓截斷後會被抑制。接著,先以腹腔注射5HT2A抑制劑ketanserin可阻斷嗎啡所引發血糖上升作用,但若先給予5HT2C的抑制劑RS102221,則無法產生抑制效果。相反地,以側腦室注射先投予RS102221可減弱嗎啡所造成血糖上升作用,然而,若先投予ketanserin,則嗎啡血糖上升作用不被減弱。上述結果可知嗎啡所引起的高血糖可能與血清素受體調節有關。文獻亦指出嗎啡是透過嗎啡μ型接受體升高血糖。在本實驗中,則以腹腔或側腦室注射嗎啡μ型接受體拮抗劑naloxonazine,結果發現升高的血糖有減弱的現象。接著,將嗎啡更換成血清素,亦發現升血糖作用有被減弱現象。嗎啡μ型受體剔除小鼠以靜脈方式投予嗎啡,亦發現血糖升高作用也有被減弱。已知嗎啡或血清素所造成高血糖的作用,皆經由釋放腎上腺素導致。於是,先以腹腔注射β阻斷劑propranolol,再投予嗎啡或血清素,發現確實能減弱嗎啡或血清素造成的高血糖作用。最後,先以腹腔注射大白鼠血清素合成的阻斷物p-chlorophenylalanine (PCPA),結果發現會減弱嗎啡所產生的高血糖現象;此顯示嗎啡的血糖升高作用會因體內血清素合成受到抑制而減弱。綜合實驗的結果指出嗎啡造成的血糖上升現象主要是經由內生性血清素所致的機轉。
Morphine is one of the alkaloids extracted from opium, which induces sedative and narcotic effects through central nervous system. Previous studies indicate that both morphine and serotonin (5-HT) have the hyperglycemic effects. However, it is still unclear whether 5-HT affects hyperglycemia evoked by morphine. This study aimed to investigate the role of 5-HT in morphine-induced hyperglycemia.The results show that morphine and 5-HT produced a significant rise on blood glucose level but were decreased in those adrenalectomized or spinal cord truncation rats. The, morphine-induced hyperglycemic effect on rats can be blocked by i.p. ketanserin (a 5HT2A antagonist), instead of RS102221 (5HT2C antagonist). The hyperglycemia induced by i.c.v. morphine can be attenuated by RS102221, whereas ketanserin does not affect in morphine-induced hyperglycemia. These results suggest that the morphine-induced hyperglycemia is related to 5-HT action via serotonin receptor activation. Some studies indicate that morphine-induces hyperglycemia through opioid-μ receptor. In this study, the hyperglycemia in response to i.c.v. morphine was reduced by naloxonazine (μ-opioid receptor antagonist). The reduced plasma glucose level was observed in μ-opioid receptor knockout mice (KO mice) treated by i.v. naloxonazine. It is well known that the hyperglycemia to morphine or 5-HT by epinephrine release. We also found that propranolol, a β receptor blocker, reduced the hyperglycemia induced by both morphine and 5-HT. The morphine-induced hyperglycemia can be attenuated by i.p. administration of p-chlorophenylalanine (PCPA, an inhibitor of 5-HT biosynthesis), suggested that the morphine-induced hyperglycemia was mediated by 5-HT biosynthesis. In conclusion the endogenous 5-HT release play a pivotal role in morphine-induced hyperglycemia.
Alexander GJ, Kopeloff LM, Alexander RB. (1980). Serotonin and norepinephrine: long-term decrease in rate of synthesis in brain of rats primed with p-chlorophenylalanine. Neurochem Res 5: 879-883.
Blundell JE. (1997) Is there a role for serotonin in feeding. Int J Obes 1: 15-42.
Bradley KT, Basbaum AI. (2003) Systemic morphine-induced release of serotonin in the rostroventral medulla is not mimicked by morphine microinjection into the periaqueductal gray J. Neurochem 86: 1129-1141.
Borona EA, Bonadonna TG, Saggiani RC. (2000) Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity. Diabetes Care 23: 57-63.
Bradley PB, Faorazrd JR, Humpherey, PP, Middlemiss DN, Mylecharane EJ. (1996) Proposal for the classification and nomemclature of function receptor for 5-hydroxytryptamine. J Neuropharmacol 25: 563-576.
Cerco L. Samanin R. (1987) Potential antidepressant properties of 8-hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin receptoe
gonist. Eur J Pharmacol 144:223-229.
Chase TN, Shoulson I, Carter AC. (1976) Serotonergic functions in man. Monograph in Neural Sci 3: 8-14.
Cranston WI, Hellon RF, Luff RH, Rawlins MD. (1972). Hypothalamic endogenous noradrenaline and thermoregulation in the cat and rabbit. J Physiol 223:59-67.
Chaouloff F, Baudrie V, Laude D. (1990a) Evidence that 5-HT1A receptors are involved in the adrenaline-releasing effects of 8-OH-DPAT in the conscious rat. Naunyn Schmiedebergs Arch Pharmacol 341:381-384
Chaouloff F, Laude D, Baudrie V. (1990b) Ganglionic transmission is a prerequisite for the adrenaline-releasing and hyperglycemic effects of 8-OH-DPAT. Eur J Pharmacol 185:11-18.
Chaouloff F, Baudrie V, Laude D. (1990c) Pentobarbital anaesthesia prevents the adrenaline-releasing effect of the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin. Eur J Pharmacol 180: 175-178.
Chaouloff F, Gunn SH, Young JB. ( 1992) Central 5-hydroxytryptamine2 receptors are involved in the adrenal catecholamine-releasing and hyperglycemic effects of the 5-hydroxytryptamine indirect agonist d-fenfluramine in the conscious rat. J. Pharmacol Exp Ther 260:1008-1016.
Cubeddu LX, Hoffman IS, Fuenmayor NT, Finn AL. (1990) Antagonist of serotonin S3 receptor with ondansetron prevents nausea and emesis induced by cyclophosphamide-cintaining chemotheraphy regimens. J Clin Onco 8: 1721-1727.
Davis JM, Alderson NL, Welsh RS. (2000). Serotonin and central nervous system fatigue: nutritional considerations. Am J Clin Nutr 72: 573S-578S.
Dekeyne A, Iob L, Hautefaye P, Millan MJ. (2002). The selective serotonin(2A) receptor antagonist, MDL100,907, elicits a specific interoceptive cue in rats. Neuropsychopharmacology 26: 552-556.
Dey PK, Feldberg W, Wendlandt S. (1975). Comparison of the hyperglycaemic effect of adrenaline and morphine introduced into the liquor space. J Physiol 246: 213-228.
Edwards RH, Hill DK, McDonnell M. (1972). Myothermal and intramuscular pressure measurements during isometric contractions of the human quadriceps muscle. J Physiol 224: 58P-59P.
Engelen M, Besche B, Lefay MP, Hare J, Vlaminck K. (2004). Effects of ketanserin on hypergranulation tissue formation, infection, and healing of equine lower limb wounds. Can Vet J 45: 144-149.
Feldstein A, Williamson O. (1968) Serotonin metabolism in pineal homogenates. J Pharmacol 20: 427-433.
Feldberg W, Myers RD. (1966). Appearance of 5-hydroxytryptamine and an unidentified pharmacologically active lipid acid in effluent from perfused cerebral ventricles. J Physiol 184: 837-855.
Feldberg W, Pyke DA, Stubbs WA. (1983). Hyperglycaemia, a morphine-like effect produced by naloxone in the cat. J Physiol 340: 121-128.
Filip M. (2005). Role of serotonin (5-HT)2 receptors in cocaine self-administration and seeking behavior in rats. Pharmacol Rep 57: 35-46.
Fischer Y, Thomas J, Kamp J, Jungling E, Rose H, Kammermeier H. (1995). 5-hydroxytryptamine stimulates glucose transport in cardiomyocytes via a monoamine oxidase-dependent reaction. Biochem J 311: 575-583.
Goldberg IE, Rossi GC, Letchworth SR, Mathis JP, Bolan E.A, Pasternak GW. (1998). Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain. J Pharmacol Exp Ther 286: 1007-1013.
Gray AC, Coupar IM, White PJ. (2006). Comparison of opioid receptor distributions in the rat central nervous system. Life Sci 79: 674-685.
Grudt TJ, Williams JT, Travagli RA. (1995). Inhibition by 5-hydroxytryptamine and noradrenaline in substantia gelatinosa of guinea-pig spinal trigeminal nucleus. J Physiol 485: 113-120.
Hammond DL, Tyce GM, Yaksh TL. (1985). Efflux of 5-hydroxytryptamine and noradrenaline into spinal cord superfusates during stimulation of the rat medulla. J Physiol 359: 151-162.
Hough LB, Nalwalk JW, Leurs R, Menge WM, Timmerman H. (2001). Significance of GABAergic systems in the action of improgan, a non-opioid analgesic. Life Sci 68: 2751-2757.
Hughes CE. Habash T, Dykstra LA, Picker MJ. (1996) Discriminative-stimulus effects of morphine in combination With - and -Noradrenergic agonists and antagonists in rats Pharmacology Biochemistry and Behavior 4: 979-986.
Isenberg KE. (1990). Excretion of fluoxetine in human breast milk. J Clin Psychiatry 51: 169-175.
Koenig JI, Meltzer HY, Devane GD, Gudelsky GA. (1986) The concentration of arginine vasopressin in pituitary stalk plasma of the rat after adrenalectomy or morphine. J Endocrinol 118: 2534-2539.
Koike H, Saito H, Matsuki N. (1994) 5-HT1A receptor-mediated inhibition of N-type xalcium current in acutly isolated ventromedical hypothalamic neuronal cells. Neurosci Research 19: 161-166.
Kuczenski R, Segal DS, Leith NJ, Applegate CD. (1987) Effects of amphetamine, methylphenidate, and apomorphine on regional brain serotonin and 5-hydroxyindole acetic acid. J Psychopharmacol (Berl) 93: 329-335.
Li JY, Wong CH, Huang EY, Lin YC, Chen YL, Tan PP, Chen JC. (2001). Modulations of spinal serotonin activity affect the development of morphine tolerance. Anesth Analg 92: 1563-1568.
Limberger N, Starke K, Singer EA. (1990). Serotonin uptake blockers influence serotonin autoreceptors by increasing the biophase concentration of serotonin and not through a "molecular link". Naunyn Schmiedebergs Arch Pharmacol 342: 363-370.
Liu IM, Chen WC, Cheng JT. (2003) Mediation of beta-endorphin by isoferulic acid to lower plasma glucose in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther 307: 1196-1204.
Lopachin RM, Rudy TA. (1982) The thermoregulatory effects of noradrenaline, serotonin and carbachol injected into the rat spinal subarachnoid space. J Physiol 333: 511-529.
Lucas G, Spampinato U. (2000). Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem 74: 693-701.
Mateo VD, Guillaume CF, Deurwaerdère PD, Ennio SC. (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum Npg3: 311-323.
Ma HC, Wang YF, Feng CS, Zhao H, Dohi S. (2005) Effects of adenosine agonist R-phenylisopropyl-adenosine on halothane anesthesia and antinociception in rats. Acta Pharmacol Sin 26: 181-185.
Mark GP, Taylor KM, Hoebel BG, Rada PV. ( 1996) Morphine and naloxone, i.p. or locally, affect extracellular acetylcholine in the accumbens andprefrontal cortex. Pharmacology Biochemistry and Behavior 4: 809-816.
Meltzer HY, (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D1, D2 and serotonin pKi values. JPET 251: 238-246
McCormick DA, Page HC. (1990) Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. J Physiol 431: 319-342.
Miller RT, Lau SS, Monks TJ. (1996) Effects of intracerebroventricular administration of 5-(glutathion-S-yl)-alpha-methyldopamine on brain dopamine, serotonin, and norepinephrine concentrations in male Sprague-Dawley rats. Chem Res Toxicol 9: 457-465.
Moore MC, Geho WB, Lautz M, Farmer B, Neal DW, Cherrington AD. (2004) Portal serotonin infusion and glucose disposal in conscious dogs. Diabetes 53: 14-20.
Moore MC, Kimura K, Shibata H, Honjoh T, Saito M, Everett CA, Smith MS, Cherrington AD. (2005) Portal 5-hydroxytryptophan infusion enhances glucose disposal in conscious dogs. Am J Physiol Endocrinol Metab 289: E225-231.
Naftchi NE, Kirschner AK, Demeny M, Viau AT. (1981) Alterations in norepinephrine, serotonin, c-AMP, and transsynaptic induction of tyrosine hydroxylase after spinal cord transection in the rat. Neurochem Res 6: 1205-1216.
Ogren SO, Johansson C. (1985) Separation of the associative and non-associative effects of brain serotonin released by p-chloroamphetamine: dissociable serotoninergic involvement in avoidance learning, pain and motor function. J Psychopharmacol (Berl) 86: 12-26.
Pentreath VW, Cottrell GA. (1973) Uptake of serotonin, 5-hydroxytryptophan and tryptophan by giant serotonin-containing neurones and other neurones in the central nervous system of the snail (Helix pomatia). Zellforsch Mikrosk Anat 143: 21-35.
Pflieger JF, Clarac F, Vinay L. (2002) Postural modifications and neuronal excitability changes induced by a short-term serotonin depletion during neonatal development in the rat. J Neurosci 22: 5108-5117.
Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdere P, Caccia S, Esposito E, Spampinato U. (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26: 311-324.
Pumford KM, Leng G, Russell JA. (1991) Morphine actions on supraoptic oxytocin neurones in anaesthetized rats: tolerance after i.c.v. morphine infusion. J Physiol 440: 437-454.
Radosevich PM, Williams PE, Lacy DB, McRae JR, Steiner KE, Cherrington AD, Lacy WW, Abumrad NN. (1984) Effects of morphine on glucose homeostasis in the conscious dog. J Clin Invest 74: 1473-1480.
Rausch JL, Johnson ME, Li J, Hutcheson J, Carr BM, Corley KM, Gowans AB, Smith J. (2005) Serotonin transport kinetics correlated between human platelets and brain synaptosomes. J Psychopharmacol (Berl) 180: 391-398.
Rapport MM, Green AA, Page IH. (1948) Serum vasoconstrictor (Serotonin). i.v. isolation and characterization J Biol Chem 176: 1243-1251.
Roizen MF, Kopin IJ, Palkovits M, Brownstein M, Kizer JS, Jacobowitz DM. (1975) The effect of two diverse inhalation anesthetic agents on serotonin in discrete regions of the rat brain. Exp Brain Res 24: 203-207.
Reisine T, Pasternak GW. (1996) Opioid analgesics and antagonists, in Goodman and Gilman’s: The Pharmacological Basis of Therapeutics 10: 521-556.
Rezek M, Novin D. (1975) The effect of serotonin on feeding in the rabbit. J Psychopharmacol 43: 255-258.
Sakellaridis N, Vernadakis A. (1986) An unconventional response of adenylate cyclase to morphine and naloxone in the chicken during early development. Proc Natl Acad Sci U S A 83: 2738-2742.
Szarbo ST. (2002) Effects of serotonin 5-hydroxytryptamine reuptake inhibition Plus 5-HT2A receptor antagonism on the firing activity of norepinephrine neurons JPET 302: 983-991.
Snelgar RS, Vogt M. (1981) Mapping, in the rat central nervous system, of morphine-induced changes in turnover of 5-hydroxytryptamine. J Physiol 314: 395-410.
Szabo ST, Blier P. (2002) Effects of serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibition plus 5-HT2A receptor antagonism on the firing activity of norepinephrine neurons. JPET 302: 983-991.
Taylor BK, Basbaum AI. (2003) Systemic morphine-induced release of serotonin in the rostroventral medulla is not mimicked by morphine microinjection into the periaqueductal gray. J Neurochem 86: 1129-1141.
Tjurmina OA, Armando I, Saavedra JM, Goldstein DS, Murphy DL. (2002) Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. J Endocrinol 143: 4520-4526.
van der Starre PJ, Solinas C. (1996) Ketanserin in the treatment of protamine-induced pulmonary hypertension. Tex Heart Inst J 23: 301-304.
Yaksh TL., Tycegm, (1979) Microinjection of morphine into the periaqueductal gray evokes the release of serotonin from spinal cord. Brain Research 171: 176-181.
Yamada J, Sugimoto Y, Kimura I, Watanabe Y, Horisaka K. (1994) Effects of tryptamine on plasma glucagon levels in mice. Neurochem Res 19: 15-18.
Yuan Q, Harley CW, McLean JH. (2003) Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem 10: 5-15.
校內:2010-08-06公開