| 研究生: | 吳柏霖 Wu, Po-Lin | 
|---|---|
| 論文名稱: | 臺灣廢木材氣化發電廠經濟分析 Economic Analysis of Waste Wood Gasification Power Plant in Taiwan | 
| 指導教授: | 林心恬 Lin, Hsin-Tien | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 工學院 - 環境工程學系 Department of Environmental Engineering | 
| 論文出版年: | 2022 | 
| 畢業學年度: | 110 | 
| 語文別: | 中文 | 
| 論文頁數: | 61 | 
| 中文關鍵詞: | 躉購費率 、再生能源發展 、經濟分析 、平準化電力成本 | 
| 外文關鍵詞: | feed-in tariff, renewable energy development, economic analysis, levelized cost of electricity | 
| 相關次數: | 點閱:204 下載:0 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
近年來我國政府著重於淨零碳排與能源轉型的改革方向,因此對於再生能源的發展也逐漸備受重視。在這方面,廢棄物生質能發電技術具有發展的潛力,過去臺灣處理農業或事業廢棄物時,大多用掩埋或焚燒等傳統處理方式,而透過將廢棄物回收再利用來進行生質能發電,可在減少廢棄物量的同時也能避免傳統處理方式所產生的環境危害。因此本研究希望藉由探討廢棄物氣化發電技術的成本效益來為生質能發展提供建議,以提供政府在能源政策制訂上的參考。
於再生能源發展中,躉購費率是影響再生能源發展和規模化的重要因素。目前在臺灣的躉購電價制度上,對廢棄物或生質能補助較少,而且也沒有應對不同類型的生質能發展給予合適的補助。因此需要調查現有再生能源的發展現況,並透過分析臺灣現有的再生能源躉購費率制訂制度,以找出生質能發電技術相對於其他再生能源的發展優勢。本研究會利用經濟分析中常見的指標來做為評估氣化發電技術經濟成效的標準,並分析原料成本、運輸成本、營運時間等重要參數的變化對於發電成本和收益的影響,目的在於瞭解此技術的投資成本,並根據臺灣現有廢棄物資源量評估發展的可行性。研究設定的情境除了考量原料的資源量外,還會將運送距離作為設廠的參考標準,模擬在不同情境下於臺灣設置此類發電廠的成本效益,並透過收益淨現值(Net Present Values, NPV)的比較來選擇合適的設置方案。
透過這次研究可以發現,在HKA 49型的燃木熱電聯產氣化機營運週期中,工人成本僅占1.51 %,顯示出優異的機械自動化特性,但若沒有在規模化的模式下運行會使得售電收入無法彌補發電所付出的成本,使收益淨現值呈現負值;而透過敏感性分析則可以瞭解到運輸和原料成本是影響氣化發電技術成本的前兩名,表示若能解決原料供應的問題,則可以進一步提升此技術的經濟效益;最後從設廠案例上來看,現階段若要於臺灣設置此類廢棄物生質能發電廠,在案例2的情形下,當考量的原料收購距離超過80 km時,高昂的運輸成本會使得此模式的營運暫不可行。從成本效益來考量後,在案例3的結果中,於各區域以不超過80 km的距離設置47台發電機的發電廠營運模式會比在案例1時設置6台氣化發電機的小規模營運或是案例2的集中式遠距離運送原料發電的方式更具有發電成本上的優勢,因此未來政府或企業可考慮藉由此模式來發展此技術,以提高臺灣再生能源的發電比例,並朝能源轉型的目標更進一步。
In recent years, the government has focused on the reform direction of Net Zero Emissions and energy transition, so the development of renewable energy has gradually attracted more attention. The biomass power generation technology has the potential for development. Taiwan used traditional methods such as landfill or incineration to dispose of waste in the past. By recycling and reusing waste to generate energy, it can reduce the amount of waste while avoiding the environmental hazards. In the development of renewable energy, the Feed-in tariff price is an important factor. At present, in Taiwan's Feed-in tariff system, there are few subsidies for waste or biomass energy. This research will use common indicators in economic analysis to evaluate the economic performance of gasification technology, and will also analyze the impact of changes in important parameters such as material costs, transportation costs, and operating time on power generation costs and benefits. The purpose is to understand the investment cost of this technology, and the feasibility of development based on the existing waste resources in Taiwan. Through the research results, it can be found that in the life cycle of the HKA 49 wood biomass gasification device, the labor cost only accounts for 1.51%, showing excellent mechanical automation characteristics, but if it does not operate in a large-scale mode, the income unable to cover the cost of power generation. Finally, from the case of setting up a plant, if the plant wants to be set up in Taiwan now, the distance for material transportation should not be too long, otherwise the high transportation cost will make the operation of this model unfeasible. After case analysis, setting up power plants of a certain scale at an appropriate distance will have more advantages in the cost than small-scale operation or centralized long-distance transportation of materials for power generation.
1. 行政院農業委員會 . 行政院農業委員會 - 農業統計資料查詢 . Available from: https://agrstat.coa.gov.tw/sdweb/public/common/Download.aspx.
2. 行政院環境保護署 . 事業廢棄物申報量統計年報 . Available from: https://waste.epa.gov.tw/RWD/Statistics/?page=Year3.
3. 經濟部能源局 . 111年度審定會第 3次會議紀錄 . Available from: https://www.moeaboe.gov.tw/ECW/renewable/content/ContentLink.aspx?menu_id=778.
4. 臺灣電力股份有限公司 . 各國電力比較 . 2019.
5. 中華民國中央銀行全球資訊網 . 貼現率 . 2022; Available from: https://www.cbc.gov.tw/tw/lp-640-1.html.
6. 中華民國經濟部 . 一百十年度再生能源電能躉購費率及其計算公式 . Available from: https://law.moea.gov.tw/LawContent.aspx?id=GL001120.
7. 台灣太陽光電產業協會, TPVIA. Available from: https://www.tpvia.org.tw/index.php?do=tech&pid=4&id=546.
8. 行政院國家發展委員會 . 臺灣 2050淨零排放路徑及策略總說明 . 2022/03/30.
9. 行政院環境保護署 . 事業廢棄物申報及管理資訊系統 . Available from: https://waste.epa.gov.tw/RWD/Statistics/?page=Year2.
10. 經濟部能源局 . 再生能源電能躉購費率計算公式使用參數表 . Available from: https://www.moeaboe.gov.tw/ECW/renewable/content/ContentLink.aspx?menu_id=778.
11. 經濟部能源局 . 能源統計資料查詢系統 . Available from: https://www.esist.org.tw/Database.
12. 經濟部能源局 . 111年度再生能源電能躉購費率計 算公式 .
13. 臺灣電力股份有限公司 . 近十年台電系統發購電量及結構 . Available from: https://reurl.cc/2Doqdm.
14. 臺灣綜合研究院 , 主要國家再生能源政策執行效益評析 . 2015.
15. 籃貫銘 . 回收新概念 為循環經濟建構完整生態系統 . 2018; Available from: http://www.ctimes.com.tw/DispArt.asp?O=HK24GC8X8D6ARASTDG.
16. Banja, M., et al., Biomass for energy in the EU - The support framework. Energy Policy, 2019. 131: p. 215-228.
17. Bora, R.R., R. Wang, and F. You, Waste Polypropylene Plastic Recycling toward Climate Change Mitigation and Circular Economy: Energy, Environmental, and Technoeconomic Perspectives. ACS Sustainable Chemistry & Engineering, 2020. 8(43): p. 16350-16363.
18. Cambero, C. and T. Sowlati, Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature. Renewable and Sustainable Energy Reviews, 2014. 36: p. 62-73.
19. Chen, H.-Y., The Analysis of Feed-in Tariff in Renewable Energy Policy-A Case Study of Onshore Windfarm. 2012.
20. Dang, Q., C. Yu, and Z. Luo, Environmental life cycle assessment of bio-fuel production via fast pyrolysis of corn stover and hydroprocessing. Fuel, 2014. 131: p. 36-42.
21. Di Maria, F. and C. Micale, A holistic life cycle analysis of waste management scenarios at increasing source segregation intensity: The case of an Italian urban area. Waste Management, 2014. 34(11): p. 2382-2392.
22. Dong, L., et al., An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Fuel, 2013. 108: p. 409-416.
23. DSIRE. Database of State Incentives for Renewables & Efficiency. Available from: https://www.dsireusa.org/.
24. Franco, C., et al., The study of reactions influencing the biomass steam gasification process. Fuel, 2003. 82(7): p. 835-842.
25. Garg, A., et al., An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste. Waste Management, 2009. 29(8): p. 2289-2297.
26. Garg, A., et al., Wastes as Co-Fuels: The Policy Framework for Solid Recovered Fuel (SRF) in Europe, with UK Implications. Environmental Science & Technology, 2007. 41(14): p. 4868-4874.
27. Gomes, M.S.D.P. and M.S. Muylaert De Araújo, Bio-fuels production and the environmental indicators. Renewable and Sustainable Energy Reviews, 2009. 13(8): p. 2201-2204.
28. Gopinath, K.P., et al., A critical review on the influence of energy, environmental and economic factors on various processes used to handle and recycle plastic wastes: Development of a comprehensive index. Journal of Cleaner Production, 2020. 274: p. 123031.
29. Green, D.W. and R.H. Perry, CAPITAL COST ESTIMATION. 2008. Perrys_Chemical_Engineers_Handbook_8thEd.
30. Guest, G., et al., Life cycle assessment of biomass‐based combined heat and power plants: centralized versus decentralized deployment strategies. 2011. 15(6): p. 908-921.
31. Huang, Y., et al., A feasibility analysis of distributed power plants from agricultural residues resources gasification in rural China. Biomass & Bioenergy, 2019. 121: p. 1-12.
32. IEA. Projected Costs of Generating Electricity. 2020; Available from: https://reurl.cc/xONMo1.
33. IEA. World Energy Balances: Overview. 2021; Available from: https://reurl.cc/8WDM77.
34. Investopedia. Calculating Present and Future Value of Annuities. 2019; Available from: https://www.investopedia.com/retirement/calculating-present-and-future-value-of-annuities/.
35. ISO. Environmental management — Life cycle assessment — Principles and framework. 2006; Available from: https://www.iso.org/standard/37456.html.
36. ITRI. Available from: https://www.twtpo.org.tw/knowledge_show.aspx?id=25.
37. Kammen, D.M. and D.A. Sunter, City-integrated renewable energy for urban sustainability. Science, 2016. 352(6288): p. 922-928.
38. Khoo, H.H., LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resources, Conservation and Recycling, 2019. 145: p. 67-77.
39. Kimming, M., et al., Biomass from agriculture in small-scale combined heat and power plants–A comparative life cycle assessment. 2011. 35(4): p. 1572-1581.
40. Koroneos, C., et al., Hydrogen production via biomass gasification—A life cycle assessment approach. 2008. 47(8): p. 1261-1268.
41. Lu, H.R. and A. El Hanandeh, Assessment of bioenergy production from mid-rotation thinning of hardwood plantation: life cycle assessment and cost analysis. Clean Technologies and Environmental Policy, 2017. 19(8): p. 2021-2040.
42. Macedo, I.C., J.E.A. Seabra, and J.E.A.R. Silva, Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy, 2008. 32(7): p. 582-595.
43. Mulvaney, D., Sustainable Energy Transitions. 2020: Springer.
44. Naqvi, S.R., et al., Agro-industrial residue gasification feasibility in captive power plants: A South-Asian case study. Energy, 2021. 214: p. 118952.
45. Nasrullah, M., et al., Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste. Waste Management, 2014. 34(8): p. 1398-1407.
46. Nguyen, T.L.T., J.E. Hermansen, and R.G. Nielsen, Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives: the case of wheat straw. Journal of Cleaner Production, 2013. 53: p. 138-148.
47. OECD. Renewable energy feed-in tariffs. 2019; Available from: https://reurl.cc/OpY363.
48. OECD, N., Projected Costs of Generating Electricity: 2010 Edition. 2010, OECD/IEA.
49. Ouyang, X. and B. Lin, Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China. Energy Policy, 2014. 70: p. 64-73.
50. Puy, N., J. Rieradevall, and J. Bartrolí, Environmental assessment of post-consumer wood and forest residues gasification: The case study of Barcelona metropolitan area. Biomass and Bioenergy, 2010. 34(10): p. 1457-1465.
51. Rafaschieri, A., et al., Life cycle assessment of electricity production from poplar energy crops compared with conventional fossil fuels. 1999. 40(14): p. 1477-1493.
52. Ripa, M., et al., Refuse recovered biomass fuel from municipal solid waste. A life cycle assessment. Applied Energy, 2017. 186: p. 211-225.
53. SpannerRe². Medium-scale wood gasifier from Spanner Re². Available from: https://www.holz-kraft.com/en/.
54. Taipower. Available from: https://www.taipower.com.tw/tc/Chart.aspx?mid=194.
55. Wang, C., et al., Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix. Energy Policy, 2015. 84: p. 155-165.
56. Wang, L., et al., Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and Bioenergy, 2008. 32(7): p. 573-581.
57. Wu, H., Y. Yu, and K. Yip, Bioslurry as a Fuel. 1. Viability of a Bioslurry-Based Bioenergy Supply Chain for Mallee Biomass in Western Australia. Energy & Fuels, 2010. 24(10): p. 5652-5659.
58. Xingang, Z., et al., Focus on situation and policies for biomass power generation in China. Renewable and Sustainable Energy Reviews, 2012. 16(6): p. 3722-3729.
59. You, S., et al., Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia. Applied Energy, 2017. 208: p. 495-510.
60. Zhao, H.-R., S. Guo, and L.-W. Fu, Review on the costs and benefits of renewable energy power subsidy in China. Renewable and Sustainable Energy Reviews, 2014. 37: p. 538-549.
 校內:2027-07-19公開
                                        校內:2027-07-19公開