簡易檢索 / 詳目顯示

研究生: 沈孟憲
Shen, Meng-Xian
論文名稱: 電漿增強式原子層沉積系統製備氧化鎵光檢測器之研究
Investigation of Ga2O3 photodetectors using plasma-enhanced atomic layer deposition system
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 73
中文關鍵詞: 電漿增強式原子層沉積系統氧化鎵金屬-半導體-金屬紫外光光檢測器
外文關鍵詞: Gallium oxide, atomic layer deposition system, ultraviolet photodetectors
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用電漿增強式原子層沉積系統製備寬能隙氧化鎵薄膜,藉由在氧氣環境下以不同溫度700 oC、800 oC及900 oC熱處理氧化鎵薄膜,時間為15分鐘,探討其經熱處理之特性變化,以分光光譜儀量測不同溫度熱處理之薄膜穿透率,並換算其光學能隙值範圍在4.89 eV~4.93 eV,並以 X光光電子能譜儀與X光繞射分析儀進行薄膜分析驗證,薄膜經由適當的熱處理條件,可降低薄膜中的氧空缺,進而提升薄膜品質。將不同溫度熱處理之氧化鎵薄膜應用於金屬-半導體-金屬紫外光光檢測器中,作為深紫外光之吸收層,透過高溫熱退火處理後能降低光檢測器暗電流與改善元件特性,以提升紫外光光檢測器元件檢測能力。
    本論文將分析氧化鎵薄膜經由不同熱退火溫度處理後,薄膜所含的氧空缺比例變化,藉由在氧氣環境下進行熱處理可以有效減少薄膜氧空缺含量,進一步降低金屬-半導體-金屬紫外光光檢測器元件暗電流及改善響應特性,元件在照光250 nm波段下具有最高光響應度。在不同溫度的氧氣環境中進行熱處理,可以發現氧化鎵薄膜於熱處理溫度為800 oC的條件下薄膜具有最少的氧空缺比例,藉由退火溫度800 oC熱處理後,元件具有最低暗電流及最高的響應特性,在施予偏壓5 V的情況下,與未退火的氧化鎵光檢測器元件相比,透過退火溫度800 oC熱處理後元件暗電流由40.36 pA下降至3.06 pA,元件於照光波長250 nm時最大光電流也由3.81 nA上升到23.42 nA,響應度從3.56 A/W提升到22.18 A/W,紫外光-可見光拒斥比由原先的7.27×103提升至5.97×104。在低頻雜訊的量測結果中,其總雜訊電流由1.82×10-12 A下降至7.97×10-13 A,等效雜訊功率由5.12×10-13 W下降至3.59×10-14 W,檢測度也從6.17×1011 cmHz1/2W-1上升到8.80×1012 cmHz1/2W−1。

    In this study, the Ga2O3 film was deposited on the sapphire substrate by plasma-enhanced atomic layer deposition (PE-ALD) system using trimethylgallium and oxygen plasma. The Ga2O3 film was applied to metal-semiconductor-metal solar-blind deep ultraviolet photodetectors as the active layers. In order to improve thin film quality and photodetector response characteristics, the Ga2O3 film was annealed. The Ga2O3 films were annealed at 700, 800, and 900 oC for 15 min under O2 ambien. By annealing at differential temperature, which can lower the dark current of device and improve response characteristics.
    In compare with the as-grown gallium oxide photodetector, the gallium oxide film annealed at 800°C photodetector had lower dark current and higher ultraviolet-visible rejection ratio. When the gallium oxide film was annealed at 800°C, the dark current of photodetector were improved from 40.36 pA to 3.06 pA, and the ultraviolet-visible rejection ratio were improved from 7.27 × 103 to 22.18 × 104 at a bias voltage of 5 V.

    摘要 I 目錄 XII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 氧化鎵材料發展 1 1.2 紫外光光檢測器發展 2 1.3 研究動機 4 參考文獻 6 第二章 原理簡介 14 2.1 原子層沉積系統原理 14 2.1.1 電漿增強式原子層沉積系統原理 15 2.1.2 氧化鎵薄膜沉積 15 2.2 光檢測器相關理論 17 2.2.1 光的吸收與輻射 17 2.2.2 薄膜穿透率與光學能隙計算 17 2.3 金屬-半導體-金屬紫外光檢測器 18 2.3.1 金屬-半導體接面理論 18 2.3.2 金屬-半導體-金屬紫外光檢測器工作原理 19 2.3.3 電流-電壓特性曲線 21 2.3.4 光檢測器響應度 21 2.4 光檢測器低頻雜訊 24 2.4.1 熱雜訊 24 2.4.2 產生-復合雜訊 24 2.4.3 閃爍雜訊 25 2.4.4 等效雜訊功率與檢測度 26 2.5 量測儀器 27 2.5.1 UV-VIS-NIR 分光光譜儀 27 2.5.2 X光光電子能譜儀 27 2.5.3 X光繞射分析儀 28 2.5.4 傅立葉紅外線光譜分析儀 29 2.5.5 光致發光量測系統 29 2.5.6 響應度量測系統 30 2.5.7 低頻雜訊量測系統 30 參考文獻 31 第三章 元件製程 39 3.1 藍寶石基板清潔 39 3.2 氧化鎵薄膜製作 40 3.3 定義氧化鎵主動區 41 3.4 氧化鎵主動區蝕刻 41 3.5 高溫爐薄膜熱退火處理 42 3.6 定義金屬指叉狀電極 42 3.7 金屬指叉狀電極製作 43 第四章 元件特性量測及分析 46 4.1 氧化鎵薄膜特性 46 4.1.1 自我侷限效應 46 4.1.2 薄膜光學特性分析 46 4.1.3 氧化鎵薄膜鍵結分析 47 4.1.4 氧化鎵薄膜結晶特性分析 48 4.1.5 氧化鎵薄膜傅立葉紅外光譜特性分析 49 4.1.6 氧化鎵薄膜光致發光光譜特性分析 49 4.2 氧化鎵光檢測器特性量測 50 4.2.1 元件暗電流比較 50 4.2.2 元件光電流與響應度特性比較 51 4.2.3 低頻雜訊特性 53 參考文獻 56 第五章 結論與未來展望 72

    第一章
    [1] H. Y. Lee, J. T. Liu, and C. T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photonics Technol. Lett., vol. 30, pp. 549-552, 2018.
    [2] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev., vol. 5, pp. 011301-1-011301-56, 2018.
    [3] M. A. Mastro, A. Kuramata, and J. Calkins, “Perspective-opportunities and future directions for Ga2O3,” ECS J. Solid State Sci. Technol., vol. 6, pp. 356-359, 2017.
    [4] M. Mohamed, I. Unger, C. Janowitz, R. Manzke, Z. Galazka, R. Uecker, and R. Fornari, “The surface band structure of β-Ga2O3,” J. Phys. Conf. Ser., vol. 286, pp. 012027-0-012027-9, 2011.
    [5] H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett., vol. 27, pp. 261904-1-261904-3, 2016.
    [6] Y. Chen, H. Liang, X. Xia, R. Shen, Y. Liu, Y. Luo, and G. Du, “Effect of growth pressure on the characteristics of β-Ga2O3 films grown on GaAs (100) substrates by MOCVD method,” Appl. Surf. Sci., vol. 325, pp. 258-261, 2015.
    [7] W. Mi, J. Ma, Z. Li, C. N. Luan, and H. D. Xiao, “Characterization of Sn-doped β-Ga2O3 films deposited on MgO (100) substrate by MOCVD,” J. Mater. Sci. Mater. Electron., vol. 26, pp. 7889-7894, 2015.
    [8] F. Alema, B. Hertog, P. Mukhopadhyay, Y. Zhang, A. Mauze, A. Osinsky, W. V. Schoenfeld, J. S. Speck, and T. Vogt, “Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film,” APL Mater., vol. 7, pp. 022527-1-022527-6, 2019.
    [9] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S.Yamakoshi, “MBE grown Ga2O3 and its power device applications,” J. Cryst. Growth, vol. 378, pp. 591-595, 2013.
    [10] Y. C. Chang, Y. J. Lee, Y. N. Chiu, T. D. Lin, S. Y. Wu, H. C. Chiu, J. Kwo, Y. H. Wang, and M. Hong, “MBE grown high k dielectrics Ga2O3(Gd2O3) on GaN,” J. Cryst. Growth, vol. 301-302, pp. 390-393, 2007.
    [11] A. S. Pratiyush, S. Krishnamoorthy, S. Kumar, Z. Xia, R. Muralidharan, S. Rajan, and D. N. Nath, “Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector,” Jpn. J. Appl. Phys., vol. 57, pp. 060313-0-060313-5, 2018.
    [12] Q. Feng, F. Li, B. Dai, Z. Jia, W. Xie, T. Xu, X. Lu, X. Tao, J. Zhang, and Y. Hao, “The properties of gallium oxide thin film grown by pulsed laser deposition,” Appl. Surf. Sci, vol. 359, pp. 847-852, 2015.
    [13] F. Zhang, M. Arita, X. Wang, Z. chen, K. Saito, T. Tanaka, M. Nishio, and Q. Guo, “Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition,” Appl. Phys. Lett, vol. 109, pp. 100-104, 2016.
    [14] Q. Guo, K. Nishihagi, Z. Chen, K. Saito, and T. Tannka, “Characteristics of thulium doped gallium oxide films grown by pulsed laser deposition,” Thin Solid Films, vol. 639, pp. 123-126, 2017.
    [15] J. H. Kim and P. H. Holloway, “Microstructural characterization of radio frequency magnetron sputter-deposited Ga2O3: Mn phosphor thin films,” J. Vac. Sci. Technol. A, vol. 20, pp. 928-933, 2002.
    [16] Z. Li, Z. An, Y. Xu, Y. Cheng, D. Chen, Q. Feng, S. Xu, J. Zhang, C. Zhang, and Y. Hao, “Improving the production of high-performance solar-blind β-Ga2O3 photodetectors by controlling the growth pressure,” J. Mater. Sci., vol. 54, pp. 10335-10345, 2019.
    [17] F. K. Shan, G. X. Liu, W. J. Lee , G. H. Lee , I. S. Kim , and B. C. Shin, “Ga2O3 thin film deposited by atomic layer deposition with high plasma power,” Integr. Ferroelectr., vol. 80, pp. 197-206, 2006.
    [18] R. K. Ramachandran, J. Dendooven, J. Botterman, S. P. Sree, D. Poelman, J. A. Martens, H. Poelmand, and C. Detavernier, “Plasma enhanced atomic layer deposition of Ga2O3 thin films,” J. Mater. Chem. A, vol. 2, pp. 19232-19238, 2014.
    [19] S. H. Lee, S. B. Kim, Y. J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S. K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photonics, vol. 4, pp. 2937-2943, 2017.
    [20] M. Haneda, Y. kintaichi, T. Mizushima, N. Kakuta, and H. Hamada, “Structure of Ga2O3-Al2O3 prepared by sol-gel method and its catalytic performance for NO reduction by propene in the presence of oxygen,” Appl. Catal. B-Environ, vol. 31, pp. 81-92, 2001.
    [21] L. Yu and H. Liu, “Photoluminescent properties of Dy3+ in MgO-Ga2O3-SiO2 nano-glass-ceramic prepared by sol-gel method,” Physica B, vol. 406, pp. 3101-3103, 2011.
    [22] H. J. Lee, W Joe, J. C. Jung, and I. K. Song, “Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3-CeO2-ZrO2 catalysts prepared by a single-step sol-gel method: effect of acidity and basicity of the catalysts,” Korean J. Chem. Eng, vol. 29, pp. 1019-1024, 2012.
    [23] T. Suntola and J. Hyvarinen, “Atomic layer epitaxy,” Annual Rev. Mater. Sci., Vol. 15, pp. 177-195, 1985.
    [24] E. J. Lee and S. O. Ryu, “Characterization of ALD processed gallium doped TiO2 hole blocking layer in an inverted organic solar cell,” J. Electron. Mater., vol. 46, pp. 961-966, 2017.
    [25] P. Lin, X. Chen, K. Zhang, and H. Baumgart, “Improved gas sensing performance of ALD AZO 3-D coated ZnO nanorods,” ECS J. Solid State Sci. Technol., vol. 7, pp.246-252, 2018.
    [26] M. Liao, and Y. Koide, “High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film,” Appl. Phys. Lett., vol. 89, pp. 113509-1-113509-3, 2006.
    [27] Z. D. Huang, W. Y. Weng, S. J. Chang, Y. F. Hua, C. J. Chiu and T. Y. Tsai, “Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles,” IEEE Photonic Technol. Lett., vol. 25 pp.1809-1811, 2013.
    [28] W. W. Liu, B. Yaoa, B. H. Li , Y. F. Li, J. Zheng , Z. Z. Zhang, C. X. Shan, J. Y. Zhang, D. Z. Shen, and X. W. Fan, “MgZnO/ZnO p-n junction UV photodetector fabricated on sapphire substrate by plasma-assisted molecular beam epitaxy,” Solid State Sci., vol. 12, pp. 1567-1569, 2010.
    [29] K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study,” J. Appl. Phys., vol. 101, pp. 114508-1-114508-5, 2007.
    [30] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet photodetector based on MgxZn1-xO thin films deposited by radio frequency magnetron sputtering,” IEEE Photonics Technol. Lett., vol. 20, pp. 2108-2110, 2008.
    [31] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, and M. Asif Khan, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection,” Appl. Phys. Lett., vol. 70, pp. 2277-2279, 1997.
    [32] L. Li, Y. Ryu, H. W. White, and P. Yu, “Characterization of ZnO UV photoconductors on the 6H-SiC substrate,” Proc. SPIE, vol. 7603, pp. 760310-1-760310-8, 2010.
    [33] K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang, S. Jang, E. Kim and S. Im, “Improved dynamic properties of ZnO-based photo-transistor with polymer gate dielectric by ultraviolet treatment,” J. Phys. D: Appl. Phys., vol. 41, pp. 135102-1-135102-5, 2008.
    [34] X. Wang, C. J. Summers, and Z. L. Wang, “Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,” Nano Lett., vol. 4, pp. 423-426, 2004.
    [35] M. D. Hammig, X. J. Chen, J. C. Campbell, T. Kang, W. Sun, E. B. Johnson, K. Lee, and J. F. Christian, “Development of Al0.8Ga0.2As photodiodes for use in wide band-gap solid-state photomultipliers,” IEEE Trans. Nucl. Sci., vol. 60, pp. 1175-1181, 2013.
    [36] Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, “MgxZn1−xO-based photodetectors covering the whole solar-blind spectrum range,” Appl. Phys. Lett., vol. 93, pp. 173505-0-173505-3,2008.
    [37] V. Kuryatkov, A. Chandolu, B. Borisov, G. Kipshidze, K. Zhu, S. Nikishin, H. Temkin, and M. Holtz, “Solar-blind ultraviolet photodetectors based on superlattices of AlN/AlGa(In)N,” Appl. Phys. Lett., vol. 82, pp. 1323-1325, 2003.
    [38] E. Monroy, F. Calle, J. A. Garrido, P. Youinou, E. Munoz, F. Omnes, B. Beaumont, and P. Gibart, “Si-doped AlxGa1-xN photoconductive detectors,” Semicond. Sci. Technol., vol. 14, pp. 685-689, 1999.
    [39] X. Du, Z. Mei, Z. Liu, Y. Guo, T. Zhang, Y. Hou, Z. Zhang, Q. Xue, and A. Y. Kuznetsov, “Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,” Adv. Mater., vol. 21, pp. 4625-4630, 2009.
    [40] S. Ahn, Y. H. Lin, F. Ren, S. Oh, Y. Jung, G. Yang, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Effect of 5  MeV proton irradiation damage on performance of β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B, vol. 34, pp. 041213-0-041213-5, 2016.
    [41] M. Zhong, Z. Wei, X. Meng, F. Wu, J. Li, “High-performance single crystalline UV photodetectors of β-Ga2O3,” J. Alloy. Compd. vol. 619, pp. 572-575, 2015.
    [42] M. A. Mastro, A. Kuramata, and J. Calkins, “Perspective-opportunities and future directions for Ga2O3,” ECS J. Solid State Sci. Technol., vol. 6, pp. 356-359, 2017.
    [43] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition basics opportunities and challenges,” J. Vac. Sci. Technol. A, vol. 29, pp. 050801-1-050801-26, 2011.
    [44] R. O’Donoghue, J. Rechmann, M. Aghaee, D. Rogalla, H. W. Becker, M. Creatore, A. D. Wieck, and A. Devi, “Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition,” Dalton Trans., vol. 46, pp. 16551-16561, 2017.

    第二章
    [1] S. M. George, “Atomic layer deposition: an overview,” Chem. Rev., vol. 110, pp. 111-131, 2010.
    [2] R. O’Donoghue, J. Rechmann, M. Aghaee, D. Rogalla, H. W. Becker, M. Creatore, A. D. Wieck, and A. Devi, “Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition,” Dalton Trans., vol. 46 , pp. 16551-16561, 2017.
    [3] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition: basics, opportunities, and challenges,” J. Vac. Sci. Technol. A, vol. 29, pp. 050801-1-050801-26, 2011.
    [4] Y. Kim, J. Koo, J. W. Han, S. Choi, H. Jeon, and C. G. Park, “Characteristics of ZrO2 gate dielectric deposited using Zr t-butoxide and Zr(NEt2)4 precursors by plasma enhanced atomic layer deposition method,” J. Appl. Phys., vol. 92, pp. 5443-5447, 2002.
    [5] C. Detavernier, J. Dendooven, D. Deduytsche, and J. Musschoot, “Thermal versus plasma-enhanced ALD: growth kinetics and conformality,” ECS Trans., vol. 16, pp. 239-246, 2008.
    [6] K. Lee, M. Shur, T. A. Fjeldly and T. Ytterdal, “Semiconductor devices modeling for VLSI,” Prentice Hall, New Jersey, 1997.
    [7] S. M. Sze, D. J. Coleman JR. and A. Loya, “Current transport in metal-semiconductor-metal structures,” Solid-State Electron., vol. 14, pp. 1209-1218, 1971.
    [8] S. M. Sze, “Semiconductor device physics and technology 2nd edition,” Wiley, chap.9.1, 2001.
    [9] Neamen, “Semiconductor Photonics Principles and Practices,” 2003.
    [10] S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C, vol.117, pp. 4194-4200, 2013.
    [11] A. A. Akl, S. A. Mahmoud, “Effect of growth temperatures on the surface morphology, optical analysis, dielectric constants, electric susceptibility, Urbach and bandgap energy of sprayed NiO thin films,” Optik, vol. 172, pp. 783-793, 2018.
    [12] S. M. Sze, “Physics of semiconductor devices 2nd,” 1987.
    [13] S. M. Sze, “Semiconductor device physics and technology 2nd edition,” Wiley, chap. 7.1.2, 2001.
    [14] Neamen, “Semiconductor Photonics Principles and Practices,” 2003.
    [15] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet photodetector based on MgxZn1-xO thin films deposited by radio frequency magnetron sputtering,” IEEE Photonics Technol. Lett., vol. 20, pp. 2108-2110, 2008
    [16] S. V. Averine, Y. C. Chan and Y. L. Lam, “Geometry optimization of interdigitated Schottky-barrier metal-semiconductor-metal photodiode structures,” Solid-State Electronics, Vol.45, p.441, 2001.
    [17] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated GaN metal-semiconductor- metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505-L507, 2001.
    [18] L. C. Chen, M. S. Fu and I. L. Huang, “Metal-semiconductor-metal AlN mid-ultraviolet photodetectors grown by magnetron reactive sputtering deposition,” Jpn. J. Appl. Phys., vol. 43, pp. 3353-3355, 2004.
    [19] E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. S. Garcı́a and E. Calleja, “Photoconductor gain mechanisms in GaN,” Appl Phys. Lett., vol. 71, pp. 870-872, 1997.
    [20] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., vol. 79, pp. 1417-1419, 2001.
    [21] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo and M. Umeno, “Back-illuminated GaN metal-semiconductor- metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505-L507, 2001.
    [22] A. A. Balandin, “Noise and fluctuations control in electronics devices,” America Scientific Publishers, USA, p.163, 2002.
    [23] X. S. Nguyen, K. Lin, Z. Zhang, B. McSkimming, A. R. Arehart, J. S. Speck, S. A. Ringel, E. A. Fitzgerald, and S. J. Chua, “Correlation of a generation-recombination center with a deep level trap in GaN,” Appl. Phys. Lett., vol. 101, pp. 102101-1-102101-5, 2015.
    [24] H. Y. Lee, J. T. Liu, and C. T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photonics Technol. Lett., vol. 30, pp. 549-552, 2018.

    第四章
    [1] D. Guo, X. Qin, M. Lv, H. Shi, Y. Su, G. Yao, S. Wang, C. Li, P. Li, and W. Tang, “Decrease of Oxygen Vacancy by Zn-Doped for Improving Solar-Blind Photoelectric Performance in β-Ga2O3 Thin Films”, Electron. Mater. Lett., vol. 13, pp. 483-488, 2017.
    [2] R. O’Donoghue, J. Rechmann, M. Aghaee, D. Rogalla, H. W. Becker, M. Creatore, A. D. Wieck and A. Devi, “Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition”, Dalton Trans., vol. 46, pp. 16551-16561, 2017.
    [3] A. K. Saikumar, S. D. Nehate, and K. B. Sundaram, “Review-rf sputtered films of Ga2O3,” ECS J. Solid State Sci. Technol., vol. 8, pp. Q3064-Q3078, 2019.
    [4] Q. N. Abdullah, F. K. Yama, K. H. Mohmoodb, Z. Hassan, M. A. Qaeed , M.Bououdina, M. A. Almessiere, A. L. Al-Otaibi, S. A. Abdulateef, “Free growth of one-dimensional β-Ga2O3 nanostructures including nanowires, nanobelts and nanosheets using a thermal evaporation method,” Ceram. Int., vol. 42, pp. 13343-13349, 2016.
    [5] D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett., vol. 105, pp.023507-1-023507-5, 2014.
    [6] S. Rafique, L. Han, and H. Zhao, “Thermal annealing effect on β-Ga2O3 thin film solar blind photodetector heteroepitaxially grown on sapphire substrate,” Phys. Status Solidi A-Appl. Mat., vol. 214, 2017.
    [7] S. F. Soares, ”Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., vol. 31, pp. 210-216, 1992.
    [8] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., vol. 79, pp. 1417-1419, 2001.
    [9] P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chenb , and W. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C, vol. 5, pp. 10562-10570, 2017.
    [10] H. Y. Lee, J. T. Liu, and C. T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photonics Technol. Lett., vol. 30, pp. 549-552, 2018.
    [11] D. Zhang, W. Zheng, R. C. Lin, T. T. Li, Z. J. Zhang, and F. Huang, “High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed,” J. Alloy. Compd., vol. 735, pp. 150-154, 2018.
    [12] Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C, vol. 7, pp. 2557-2562, 2019.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE