| 研究生: |
廖隆基 Liao, Long-chi |
|---|---|
| 論文名稱: |
免震建築個案研究-以台北市某金融辦公大樓為例 A Study On Base Isolated Building-The Case study Of A Financial Office Building In Taipei |
| 指導教授: |
黃斌
Huang, Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系碩士在職專班 Department of Architecture (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 隔震體 、免震建築 、傳統耐震建築 |
| 外文關鍵詞: | Base-Isolated building(Seismic-Isolation), Base-Fixed building, Isolator |
| 相關次數: | 點閱:59 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1980年代以前建築結構防震設計著重於抗震、耐震,增加結構強度與韌度,避免建築物在生命週期內因地震而崩塌,而後設計理念改變為如何消耗地震輸入的能量,或減少結構反應加速度,使結構設計經濟的建築也能承受大地震也不致破壞崩塌、而有免震隔震結構出現。
傳統耐震設計考慮材料塑性吸收能量之特性,當結構材受力達降伏後,發揮塑性吸收地震能量避免建築物突然崩塌,免震構造則藉免震層位移,隔離地震力,其上部結構維持設計強度與勁度,在彈性範圍內建築物上下層幾無相對位移,非僅建築物沒有變形破壞,更不會破壞其內部之收容物及非結構物等二次部材。
免震設施於大地震時可使建築物免於破壞,主要由於它能衰減加於建築物之地震力,地震力小則耐震設計上為確保建築物安全所需之構材的強度、勁度而耗費之材料及斷面皆可減少。
為瞭解國內建築物於裝設免震系統後,其結構構材用料與傳統耐震結構有何差異,及隔震器材在耐震設計上應注意事項。本研究參研國內外文獻及設計例,整理比對,並以台北市某施工中之免震構造金融辦公大樓,另依傳統耐震(基礎固定)規範設計,分析、統計其結構用材,比對兩者之結構用材(鋼筋、混凝土等)之數量、造價獲得以下具體結論:
(1) 本研究案例分析結果並未如預期,免震構造可達到樑柱構材明顯減少情形,其原因分析結果有兩點:(a)台灣類似案例絕無僅有,剛開始使用免震構造無類似完成案例可援引,只能參仿國外不同案例,故設計趨近保守,幾乎沒有利用該構法結構原理之優點,即建物增加振動週期後,加速度減小進而降低地震力的特點,因此主要結構構材樑柱等之斷面皆大於應力所需斷面,也就是並沒有因設置隔震裝置而節省結構斷面用材。(b)本案例結構系統跨距較大用途特殊,設定之靜、活載重較大,而地震力因使用Isolator隔震後減為幾近30%~45%,結構部材斷面設計,大都為長期垂直荷重控制,地震力不為決定設計斷面的因素。隔震降低地震力反而沒能發揮材料之強度。
(2) 免震結構系統因建物跨距,構造種類、建物使用機能及採用隔震器材性能(阻尼有否及大小)等因子,也就是建築物規劃時之目標性能,皆可能影響結構部材的使用量。
(3) 免震建築之採用皆為滿足建築物之目標性能而作,其經濟效益宜以建築物之生命週期之費用評估才允當。
The earthquake-resistant of building design before 1980 was emphasized on how to prevent a building from collapsing during its life-cycle, hence the engineers always try to increase the strength and ductility of material of structure member of building. Thereafter a new concept was introduced, which consider about how to dampening the energy of earthquake or to decrease the response-acceleration of structure when earthquake attacks. Consequentially, we could have building with lesser structural member size that does not collapse when there is a big earthquake. And that is seismic-isolation building.
The general seismic building when loading to yielding, the plastic property of structural material absorbs the vibration energy of seismic, that prevent the building from suddenly collapse. Due to the displacement of seismic-isolation layer, the seismic-isolation building protects the structure from damage by way of separating the building from earthquake force. The upper part of the building maintains its designed strength and stiffness. No/little relative displacement occur between the upper and lower stories, hence there’s neither deformation damage of the building nor that of its content and secondary structural member.
By introduction of the seismic-isolation system, the horizontal ground motion of the upper structure of the seismic-isolation building can be significantly reduced, then the physical quantity of materials used can be reduced, therefore the member size of structure are decreased.
For the purpose of getting the difference of the amount of the physical quantity of structural member between the building with and without seismic-isolation system, we study the reference data about seismic-isolated design, try to understand all the basic know-how of seismic-isolation building and its theory. We select a financial office building in Taipei as “case study” to compare its structural materials (steel, concrete etc.) used, and cost-taken by designing it being Fixed-Base vs. Base-Isolated
We got some conclusion as follows:
(1) We haven’t got the result we predicted from the case study that a building with Base-Isolated used much less materials than that of Fixed-Base building. We consider there are probably two reasons:
○aThere is little/no similar precedent project to imitate in Taiwan. The structural engineer keeps conservative for the sake of security, doesn’t develop the advantage of structure theory of the seismic-isolation construction, that will lengthens the period of vibration of the building and decrease its acceleration and reduces the amount of lateral load acting on it due to earthquake. Hence both the column and beam section of the primary structural member are bigger than that needed.
○bThe structure system in this case study has larger Beam-span and the D.L.&L.L. are greater than general because of building kind of usage; the lateral load by earthquake reduce to 30%~45% being equipped with isolator. Hence the section size needed, of the structure member, is controlled by the long-term vertical loading. Seismic force is not the main factor to decide the section size.
(2)The quantity of materials of structure member of a seismic-isolation building varies with the factors such as: Beam-span, kinds of construction, function of building and property of isolator used, etc. So to speak, the goal of building performance plays a vital role in deciding the section size and quantity of materials of structure member in the planning stage of a project.
(3)The seismic-isolation building is designed to meet the goal of building performance, the evaluation of its economic-benefit should assess through the building’s life-cycle.
中文
C1 許資生‧台灣建築物隔震設計實例之研究‧2003.11‧土木技師全聯會
C2 詹添全等‧隔震建築物規劃與細部設計原則之研究‧2003.10‧建築學會
C3 詹添全等‧隔震建築鉛心隔震器品質計畫書之製作‧2003.10‧建築學會
C4 劉得弘‧輕質骨材混凝土建築之耐震效益研究‧2003.06‧中興土研所碩論
C5 姚昭智‧地震工程學講義‧2003.02
C6 內政部‧建築物隔震設計規範‧2002.04
C7 段永定‧建築結構隔震設計手冊之研訂‧2001.12‧內政部建築研究所
C8 郭道林‧震災建築物拆除重建與修復補強之經濟效益評估‧2001.06‧中興土研所碩論
C9 謝定亞等‧營造工程分包模式之成本與經濟效益分析—以鋼筋工程加工自動化為例‧2000.12‧中國土木水利工程學刊Vol.12.NO.1 pp.203~216
C10蕭江碧‧建築物含一樓軟弱層之耐震能力調查分析及對策研究‧2000.09‧內政部建築研究所
C11江支川‧隔震技術入門‧2000.09‧田園城市文化事業有限公司
C12中華民國建築師公會全聯會‧921震災後營建體系與展望專題之檢討彙編‧2000.06
C13許茂雄‧建築結構系統‧1999
C14葉祥海等‧建築物隔震消能規範之示範計畫‧1999.06‧內政部建築研究所
C15蔡崇興等‧減震隔震技術‧1998‧土木技師全聯會
C16技師報鐘立來‧結構主動控制於抗風耐震之應用‧1998.06‧高雄市土木技師公會
C17唐家祥.劉再華‧建築結構基礎隔震‧1997.08‧淑馨出版社
C18陳聖仙‧建築節能設計經濟效益評估‧1995‧成大建研所碩論
C19林炳昌‧強震時基部隔震系統樓房之反應研究‧1992.09(結構工程期刊)
C20高希均‧經濟學的世界‧1991.01.31‧天下文化出版公司
C21王吉祥‧具隔震結構物考慮基土為柔性支承之受震行為研究‧1992.06
C22張荻薇‧認識隔(減)震、制震結構‧1988.01(結構工程期刊)
C23柯鎮洋‧淺談免震、防振及制振構造工法‧1987.10(結構工程期刊)
外文
F1 Sarah A. Smith‧Evaluation of Fixed Base vs. Base Isolated Building System‧2003
F2 Anthony Spaeth‧THE DAY TAIWAN CRUMBLED‧1999.10.04‧TIME
F3 GEORGE J. CHURCH‧THE QUAKE‧1995.01.30‧TIME MAGAZINE
F4 和田章 監修‧(特集)免震構造の最新動向‧2001.07‧建築技術
F5 日本免震構造協會‧2001‧免震建築の設計とディテ–ル‧彰國社
F6 日本免震構造協會‧2000.09.30‧免震構造入門‧株式會社オーム社
F7 KUMAGAI耐震事業推進室‧免震制震技術簡介‧1999‧株式會社熊谷組
F8 オイレス工業株式會社‧「建築用」免震制振總合カタロダ‧1998
F9 大崎順彥 監修.清水建設免震開發グル–プ編‧わかりやすい免震建築‧1990.12.10‧理工圖書株式會社
F10 大崎順彥 監修.清水建設免震開發グル–プ編‧わかりやすい免震建築‧1987.05.25‧理工圖書株式會社
F11 大崎順彥‧地震と建築‧1983.08.23‧岩波書店
F12 內田祥哉等‧建築構法計畫‧1983.11.05‧鹿島出版會