簡易檢索 / 詳目顯示

研究生: 李嘉文
Li, Jia-Wen
論文名稱: 生活汙泥裂解油製備及其燃燒特性研究
A Study of Thermal Process for Sewage Sludge Pyrolytic Oil and its Combustion Characteristics
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 生活汙泥裂解油田口實驗法燃燒特性
外文關鍵詞: Sewage Sludge, Pyrolytic oil, Taguchi Method, Combustion Characteristics
相關次數: 點閱:126下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生活污泥是一種常見的城市固體廢棄物,可以使用熱裂解技術將其作為再生能源利用。汙泥裂解油不只可以被用來當作燃料,還可以生產做為化學原料。在本研究中,運用田口實驗設計法探討不同操作條件下之汙泥熱裂解產油最大化製程。由實驗結果獲得最大產油量為10.19 wt.%,操作條件為熱裂解溫度450℃、停滯時間60分鐘、升溫速率10 ℃/min、氮氣流速700mL/min。不同參數對熱裂解產油最大化之影響程度排列分別為氮氣流速、熱裂解溫度、升溫速率與停滯時間。
    使用熱重分析儀研究汙泥裂解油在熱裂解和氧化反應下的變化趨勢,可計算獲得燃燒特性參數,例如引燃溫度、燃盡溫度、可燃性指數、綜合燃燒指數,並與重油相比,得知汙泥裂解油含有較佳的燃燒性質。
    最後,利用懸掛液滴實驗系統探討汙泥裂解油與混摻汙泥裂解油的重油其燃燒特性。汙泥裂解油是一個多組份的燃料,在整個受熱過程中持續發生微爆現象,當液滴受熱環境溫度為600℃時,汙泥裂解油滴產生燃燒反應,並形成一個非預混火焰包圍在液滴周圍。隨著汙泥裂解油在重油中的添加比例提升,也造成油滴的引燃時間延遲。汙泥裂解油的燃燒特性現象可以使用d2-law以一條直線加以近似,其斜率即燃燒速率係數K為1.56 mm2/s。

    Sewage sludge is a common municipal solid waste and can be utilized as a kind of raw materials for renewable energy using thermal pyrolysis. Sludge pyrolytic oil can not only be used as fuel but also to produce chemicals. In this work, the effects of different parameters on sewage sludge pyrolysis are investigated using Taguchi method. From the experimental results, the maximum yield of 10.19%wt pyrolytic oil is obtained under the pyrolytic temperature of 450°C, the residence time of 60 minutes, the heating rate of 10 °C/min and the nitrogen flow rate of 700 mL/min. The effective sequence of different pa-rameters on sewage sludge pyrolysis is nitrogen flow rate, pyrolytic temperature, heating rate and residence time, respectively.
    The pyrolysis reactions and oxidation reactions of sludge pyrolytic oil are investigated using thermal-gravimetric analysis(TGA). The combustion performance parameters such as the ignition temperature, burnout temperature, flammability index and combustion characteristics index are also calculated and compared with heavy fuel oil to have a better understanding of the combustion properties of sludge pyrolytic oil.
    Finally, the suspended droplet experimental system is also used to explore the com-bustion characteristics of sludge pyrolytic oil and its blends with heavy fuel oil. The pyrolytic oil of sewage sludge is a multi-component fuel and it results in micro-explosion during heating process. When the droplet is heated at high ambient temperature (600°C), it is ignited and forms a non-premixed flame wrapping the droplet. The addition of sludge pyrolytic oil in the heavy fuel oil will increase the ignition delay time. However, it will enhance the burning rate when compared to pure heavy fuel oil. The fuel combustion characteristics of sludge pyrolytic oil are substantially in accordance with d2-law and it can be approximated with a constant burning rate of 1.56 mm2/s.

    摘要 I 英文衍生摘要 III 致謝 XVI 目錄 XVII 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 論文章節簡介 5 第二章 文獻回顧與研究目標 7 2.1 生質物(Biomass)與生質燃料(Biofuels) 7 2.2 生活汙泥(Sewage Sludge) 10 2.3 熱裂解(Pyrolysis) 11 2.4 田口式實驗設計法(Taguchi Methods) 14 2.4.1 簡介 14 2.4.2 直交表 16 2.5 液態燃料燃燒 17 2.5.1 d2-Law 18 2.5.2 微爆現象 20 2.6 液滴燃燒實驗法 22 2.6.1 懸掛液滴法 (suspended droplet) 22 2.6.2 自由液滴法 (free droplet) 24 第三章 實驗設備與實驗方法 26 3.1 實驗物料 26 3.2 實驗設備與方法 26 3.2.1 熱裂解系統 26 3.2.2 懸掛液滴法之設備 27 3.2.3 攜帶型酸鹼度計 34 3.2.4 熱卡計 34 3.2.1 元素分析儀 35 3.2.2 熱重分析儀 36 3.2.3 燃燒特性參數 37 3.2.4 近似分析 39 3.2.5 氣相層析質譜儀(GC-MS) 40 3.2.6 生活汙泥裂解產油流程 41 第四章 實驗結果與討論 43 4.1 生活汙泥熱裂解參數討論與製程最適化 43 4.1.1 乾燥後生活汙泥熱分析 43 4.1.2 氮氣流速對於系統中汙泥裂解油收集率之影響 44 4.1.3 生活汙泥熱裂解操作參數的最佳化 45 4.1.4 生活汙泥熱裂解操作參數最佳化之確認實驗 47 4.2 汙泥與汙泥裂解油之特性 47 4.2.1 元素分析(Elemental analysis, EA) 48 4.2.2 汙泥裂解油與燃料油之物理化學特性 48 4.2.3 汙泥裂解油成分分析 50 4.3 熱重分析 51 4.3.1 汙泥裂解油 51 4.3.2 重油 52 4.3.3 混摻20%汙泥裂解油+80%純重油 53 4.3.4 混摻50%汙泥裂解油+50%純重油 54 4.3.5 燃燒特性指數 55 4.4 單顆油滴受熱行為 56 4.4.1 環境溫度500℃ 56 4.4.2 環境溫度550℃ 60 4.4.3 環境溫度600℃ 65 4.4.4 各環境溫度下液滴受熱行為結論 68 4.4.5 綜合討論 70 第五章 結論 72 參考文獻 74 表格 82 圖片 88

    1. Mcneill, I. C., “15-Thermal Degradtion.” Comprehensive Polymer Science and Supplements, 6 pp. 451-5001, 1989.
    2. Martin, I., Hoffert, K. C., Gregory, B., David R. C., Christopher, G., Howard, H., Atul, K. J., Klaus, S., Lackner, H. S., Kheshgi, J., Lewis, S. H., Douglas, L., Wallace, M., John, C., Mankins., & John, L., Michael, P., Mauel, E., Michael, E., Schlesinger., Volk, T., Tom, M. L., Wigley., “Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet,” Science, 298 pp. 981-87, 2002.
    3. Agblevor, F. A., Besler, S., and Wiselogel, A. E., “Fast Pyrolysis of Stored Biomass Feedstocks.” Energy & Fuels, 9 pp. 635-40, 1995.
    4.行政院環境保護署, “汙泥處理現狀檢討及因應策略,” 2014.
    5. Loppinet-Serani, A., Aymonier, C., Cansell, F., “Current and foreseeable applications of supercritical water for energy and the environment”, ChemSusChem 1, 486-503, 2008.
    6. Basu, P., “Biomass Gasification, Pyrolysis and Torrefaction”, Practical De-sign and Theory, Second Edition, Elsevier Inc., 2013.
    7. Singh, A., Nigam, P. S., Murphy, J.D., “Renewable Fuels from Algae: An Answer to Debatable Land Based Fuels.” Bioresource Technology, 102 pp.10-16, 2011.
    8. Sami, M., Annamalai, K., Wooldridge, M., “Co-firing of coal and biomass fuel blends.” Prog. Energy Combust, 27 pp. 171-214, 2001.
    9. Robinson, AL., Junker, H., Buckley, S. G., Sclippa, G,, Baxter, L. L., “In-teractions between coal and biomass when cofiring”, Proc. Combust. Inst., 27 pp. 1351-1359, 1998.
    10. Demirbas, A., “Sustainable cofiring of biomass with coal.” Energy Con-vers. Manage., 44 pp. 1465-79, 2003.
    11. Haykiri-Acma, H., Yaman, S., “Effect of biomass on burnouts of Turkish lignites during co-firing.” Energy Convers. Manage., 50 pp. 2422-7, 2009.
    12.http://www.adktroutguide.com/files/Chinese_Paper_-_Sludge_Conversion.pdf
    13.邵敬愛, “城市汙水汙泥熱解試驗與模型研究.”華中科技大學博士學位論文,2008
    14. EPA. Process design manual for sludge treatment and disposal[M]. Center for environmental research information techonology transfer USA, 1979: 10-74
    15. Shibata, S., Procede de fabrication dune huille combustible a partir de boue digeree. French Patent 838-063, 1939.
    16. Bayer, B., Kutubuddin, M., Proceedings of the International Recycling Congress., EF Verlag, Berlin, 314-318, 1978.
    17. Czernik, S., Bridgwater, AV., “Overview of applications of biomass fast pyrolysis oil.” Energy & Fuel, 18 pp. 590–598, 2004.
    18. Bridgwater, AV., “Review of fast pyrolysis of biomass and product up-grading.” Biomass & Bioenergy, 38 pp. 68-94, 2012.
    19. Yaman, S., “Pyrolysis of biomass to produce fuels and chemical feed-stocks.” Energy Convers. Manage., 45 pp. 651-671, 2004.
    20. Wiedner, K., Rumpel, C., Steiner, C., Pozzi, A., Maas, R., Glaser, B., “Chemical evaluation of chars produced by thermochemical conversion (gasi-fication, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale.” Biomass & Bioenergy, 59 pp. 264-278, 2013.
    21. Goyal, H. B., Diptendu, S., & Saxena, R. C., “Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review,” Renewable and Sustainable Energy Reviews, 12 (2) pp. 504-17, 2008.
    22. Klass, D. L., Biomass for Renewable Energy, Fuels and Chemicals: Thermal Conversion: Pyrolysis and Liquefaction, Academic Press, 225-69, 1998.
    23. Koufopanos, C. A., Papayannakos, N., Maschio, G., and Lucchesi, A., “Modelling of the Pyrolysis of Biomass Particles. Studies on Kinetics, Ther-mal and Heat Transfer Effects,” The Canadian Journal of Chemical Engineer-ing, 69 pp. 907-15, 1991.
    24.楊義榮, 「廢棄物加熱分解處理法」, pp. 109-35, 1985.
    25. Menendez, J. A., Inguanzo, M., Pis, J. J., “Microwave-induced pyrolysis of sewage sludge.” Water Res, 36 pp. 3261-4, 2002.
    26.李輝煌, “田口方法 品質設計的原理與實務.” 高立圖書有限公司, 2010.
    27. León, R. V., Anne, C., Shoemaker., & Raghu, N. K., “Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchi's Signal-to-Noise Ratios,” Technometrics, 29 (3) pp. 253-65, 1987.
    28. Ghani, J. A., Choudhury, I. A., & Hassan, H. H., “Application of Taguchi Method in the Optimization of End Milling Parameters,” Journal of Materials Processing Technology, 145 (1) pp. 84-92, 2004.
    29.吳復強, “田口品質工程”, 台北: 全威, 1992.
    30.黎正中, “穩健設計之品質工程”, 台北: 台北圖書, 1993.
    31. Tang, B., “Orthogonal Array-Based Latin Hypercubes,” Journal of the American Statistical Association, 88 (424) pp. 1392-97, 1993.
    32.鍾清章, “田口式品質工程導論”, 台北: 中華民國品質學會, 1998.
    33. Cantrell, K., Ro, K., Mahajan, D., Anjom, M. and Hunt, P. G., “Role of Thermochemical Conversion in Livestock Waste-to-Energy Treatments Obstacles and Opportunities,” Ind. Eng. Chem. Res., 46 pp. 8918-27, 2007.
    34. Spalding, D. l., “The Combustion of Liquid Fuels,” Fuel, 32 pp. 169-185, 1953.
    35. Law, C. K., Combustion Physics, Cambridge University Press, New York, 2006.
    36. Ivanov, V. M., and Nefedov, P. I., ”Experimental Investigation of the Combustion Process in Nature and Emulsified Fuels.” NASA TT F-258, 1965.
    37. Ithnin, A. M., Noge, H., Kadir, H. A., Jazair, W., “An overview of utilizing water-in-diesel emulsion fuel in diesel engine and its potential research study.” Journal of the Energy Institute, 87 pp. 273-288, 2014.
    38. Wang, C. H., and Law, C. K., ‘‘Microexplosion of Fuel Droplets under High Pressure,’’ Combustion and Flame, 59 pp. 53-62, 1985.
    39. Wang, C. H., and Chen, J. T., ‘‘An Experimental Investigation of the Burning Characteristics of Water-Oil Emulsions,’’ Int. Comm. Heat Mass Transfer, 23 (6) pp. 823-834, 1996.
    40. Tsue, M., Kadota, T., Segawa, D., and Yamasaki, H., ‘‘Statistical Analysis on Onset of Microexplosion for An Emulsion Droplet,’’ Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, pp. 1629-1635, 1996.
    41. Villasenor, R., and Garcia, F., “An Experimental Study of the Effects of Asphaltenes on Heavy Fuel Oil Droplet Combustion,” Fuel, 78 pp. 933-944, 1999.
    42. Lam, S. C. A., and Sobiesiak, A., “Biodiesel Droplet Combustion,” Journal of Kones Powertrain and Transport, 13 (2) pp. 267-274, 2006.
    43. Calabria, R., Chiariello, F., and Massoli, P., “Combustion Fundamentals of Pyrolysis Oil Based Fuels,” Experimental Thermal and Fluid Science , 31 pp.413-420, 2007.
    44. Hou, S. S., Rizal, F. M., Lin, T. H., Yang, T. Y. and Wan, H. P., “Microexplosion and ignition of droplets of fuel oil/bio-oil (derived from lauan wood) blends,” Fuel, 113 pp. 31-42, 2013.
    45. Botero, M. L., Huang, Y., Zhu, D. L., Molina, A. and Law, C. K., “Droplet Combustion of Ethanol, Diesel, Castor Oil Biodiesel, and Their Mixtures,” U.S. National Technical Meeting of the Combustion Institute, 2011.
    46藍璟賢, “蓖麻裂解油單顆油滴燃燒行為之研究”, 國立成功大學航空太空科學系, 碩士論文, 2014.
    47.科技部高瞻自然科學教學資源平台, http://wps.prenhall.com/
    48.http://www.speciation.net/Database/Instruments/elementar-Analysensysteme-GmbH/vario-EL-III-Element-Analyzer-;i1898
    49. Tognotti, L., Malotti, A., Petarca, L., and Zanelli, S., “Measurement of Ignition Temperature of Coal Particles Using a Thermogravimetric Technique”, Combustion Science and Technique, Vol. 44, pp. 15¬28, 1985.
    50. Crelling, J. C., Hippo, E. J., Woerner, B. A., and West, D. P. Jr., “Combustion Characteristics of Selected Whole Coals and Macerals”, Fuel, Vol. 71, pp. 151¬-158, 1992.
    51. Huang, X., Jiang, X., Han, X., and Wang, H., “Combustion Characteristics of Fine – a and Micro – pulverizes Coal in the Misture of O2/CO2” Energy and Fuels, Vol. 22, pp. 3756¬-3762, 2008.
    52.陳建原, 孫學信, “煤的揮發分釋放特性指數燃燒特性指數的確立,” 動力工程, 7 (5) pp. 33-36, 1987.
    53. Essenhigh, R. H., Misra, M. K., Shaw, D. W., “Ignition of coal particles: A review.” Combustion and Flame, 77(1) pp. 3–30, 1989.
    54.李睿, 金保升, 賈相如, “污泥熱解油的燃燒特性及動力學模型,” Journal of Combustion Science and Technology, 15 (4), 2009.
    55. Isabel, F., Gloria, G., Manuel, A., Javier, Á., Jesús, A., “Sewage sludge pyrolysis for liquid production: A review” Renewable and Sustainable Energy Reviews, 16 pp. 2781-2805, 2012.
    56. Bruce, C.,Kevin, M., “Proximate Analysis of Coal and Coke using the STA 8000 Simultaneous Thermal Analyzer”, http://www.perkinelmer.com/CMSResources/Images/44-142549APP_Proximate_Analysis_Coal_Coke.pdf
    57. http://www.agilent.com/cs/library/brochures/US5898-6105EN.pdf
    58. Thipkhunthod, P., Meeyoo, V., Rangsunvigit, P., Kitiyanan, B., Siemanond, K., Rirksomboon, T., “Pyrolytic characteristics of sewage sludge”, Chemosphere, 64 pp. 955-962, 2006.
    59. Wang, Y., Chen, G., Li, Y., Yan, B., Pan, D., “Experimental study of the bio-oil production from sewage sludge by supercritical conversion process” Waste Management, 33 pp. 2408-2415, 2013.
    60. Thipkhunthod, P., Meeyoo, V., Rangsunvigit, P., Kitiyanan, B., Siemanond, K., Rirksomboon, T., “Pyrolytic characteristics of sewage sludge”, Chemosphere, 64 pp. 955–962, 2006.
    61. Gómez-Rico, MF., Font, R., Fullana, A., Martín-Gullón, I. “Thermogravimetric study of different sewage sludges and their relationship with the nitrogen content”, J. Anal. Appl. Pyrolysis, 74 pp. 421–428, 2005.
    62. Kristensen, E., “Characterization of biogenic organic natter by stepwise thermogravimetry (STG)”, Biogeochemistry 9 pp. 135-139, 1990.
    63. Gao, N.B., Thipkhunthod, P., Meeyoo, V., Rangsunvigit, P., Kitiyanan, B., Siemanond, K., Rirksomboon, T., “Pyrolytic characteristics of sewage sludge”, Chemosphere, 64 pp. 955–962, 2006.
    64. Li, J.J., Qi, B.Y., Li, A.M., Duan, Y., Wang, Z., “Thermal analysis and productsdistribution of dried sewage sludge pyrolysis”, J. Anal. Appl. Pyrolysis, 105 pp. 43-48, 2014.
    65. Pütün, E., “Catalytic Pyrolysis of Biomass: Effects of Pyrolysis Temperature, Sweeping Gas Flow Rate and Mgo Catalyst,” Energy, 35 (7) pp. 2761-66, 2010.
    66. Elliott, D. C., “Analysis and upgrading of biomass liquefaction products”, Final report. IEA Co-operative project D1 Biomass Liquefaction Test Facility Project[R]. Washington, USA: Pacific Northwest Laboratory, 1984.
    67. Bridgwater, A. V., Meier, D., Radlein, D., “Anoverview of fast Pyrolysis of biomass[J].” Organic Geochemistry, (30) pp. 1479-1493, 1999.
    68. Oasmaa, A., Peacocke, C. A., “Guide to Physical Property Characterization of Biomass-Derived Fast Pyrolysis Liquids[R]”, Espoo: VTT Publications, 2001.
    69. Xu, J., Jiang, J., Sun, Y., et al. “Bio-oil upgrading by means of ethylester production in reactive distillation to remove water and to improve storage and fuel characteristics[J]”. Biomass and bioenergy, 32 pp. 1056-1061, 2003.
    70. Stamatovv, H. S., “Combustion properties of slow pyrolysis bio-oil produced form indigenous Australian species[J].” Renewable Energy, 31 pp. 2108-2121, 2006.
    71. Bishop, PL., “Pollution prevention fundamentals and practice”, New York: McGraw-Hill Book Co, 2000.
    72. Bridle, T., Unkovich, I., “Critical factors for sludge pyrolysis in Australia.” Water, 29 pp. 43-48, 2002.

    下載圖示 校內:2018-02-19公開
    校外:2018-02-19公開
    QR CODE