| 研究生: |
涂耀庭 Tu, Yao-Ting |
|---|---|
| 論文名稱: |
防火門阻熱時效之數值模擬 Numerical Simulations on Fire Resistance During of Fire Door |
| 指導教授: |
林三益
LIN, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 有限元素法 、阻熱時效 、輻射 、熱分析 、防火門 、熱傳導係數 |
| 外文關鍵詞: | finite element, heat analysis, radiation, fire door, thermal conductivity, fire resistance during |
| 相關次數: | 點閱:76 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在以有限元素法(Finite element method)模擬防火門耐火測試,藉以找出影響阻熱時效(Fire resistance during)的因素,研究中採用有限元素軟體ANSYS作為研究平台,並將複雜的防火門結構加以適當的簡化,分別以材料以及結構方面著手進行熱分析,並考慮輻射(Radiation)、對流(Convection)及傳導(Conduction)效應,研究在不同情形下,各項因素對於阻熱時效的影響,期以有限元素分析的方式,在防火門設計初期,給予防火門開發者改進防火門防火時效的設計建議。在程式驗證方面,首先本研究先以Chow et al一維材料熱傳試驗驗證有限元素軟體各項參數設定的正確性,再來以Walili et al的防火門實體門樘試驗數據作為實驗驗證數據,將實驗數值與模擬數值相比較,證實有限元素軟體的確可有效預測實際的溫度變化情形,最後對於防火門做了一系列的模擬測試。
經由模擬結果可作出以下結論;(1)防火材料中熱傳導係數(Thermal conductivity)影響防火門之阻熱時效最大。(2)防火門骨架結構對於阻熱時效影響甚鉅。(3)材料性質為影響模擬準確性的重要參數。
The purpose of this study is to study fire resistance and temperature distribution of fire door by numerical simulations. In this paper, the Finite element software ANSYS is used to proceed the simulations. We appropriately simplified the complicated structure of fire doors in order to do the heat analysis in detailed. The radiation, convection, and conduction effects are considered. In order to give suggestions about fire-resistant improvement for fire door developers in the beginning of fire door design, this research used the method of Finite element to understand the influence on fire resistance during. First the transmitting heat in one-dimension material and the Wakili et al.’s fire door frames experiment are simulated to validate the numerical method.
One can conclude that the framework of a fire door and the thermal conductivity of fire door material are important factors on fire resistance of a fire door.
A corrector material parameters such as radiation, convection and conduction, are fundamental issues for the simulating fire resistance of a fire door.
參考文獻
【1】中華民國家標準 CNS 總號11227,建築用防火門耐火試驗法,經濟部中央標準局,台灣,2002.
【2】ANSYS, Inc. ANSYS 11.0, USA, 2008
【3】A. F. Milis, Basic heat and mass transfer, Irwin, UAS, 1995.
【4】D. Joyeux, “Experimental investigation of fire door behavior during a natural fire,” Fire Safety Journal 37(6), pp. 605-614, 2002.
【5】H. Yuncu, “Thermal contact conductance of nominally flat surfaces,” Heat and Mass Transfer, Vol. 43(1), pp. 1-5, 2006.
【6】M. H. Shojaefard and K. Goudarzi “The Numerical Estimation of Thermal Contact Resistance in Contacting Surfaces” American Journal of Applied Sciences, Vol. 5(11), pp.1566-1571, 2008.
【7】S. M. S. Wahid; C. V. Madhusudana, “Gap conductance in contact heat transfer,” International Journal of Heat and Mass Transfer, Vol. 43(24), pp. 4483-4487, 2000.
【8】J. Ghojel, “Experimental and analytical technique for estimating interface thermal conductance in composite structural elements under simulated fire conditions,” Experimental Thermal and Fluid Science, Vol. 28(4), pp. 347-354, 2004.
【9】W. K. Chow, Y. Y. Chan, “Computer simulation of the thermal fire resistance of building materials and structural element,” Construction and Building Materials, Vol. 10(2), pp. 131-140, 1996.
【10】BS 476-20, “Fire tests on building materials and structures-part 20,;Methords for determination of the resistance of element of construction,” 1987.
【11】K. G. Wakili, L. Wullschleger, E. Hugi, K, “Thermal behavior of a steel door frame subjected to the standard fire of ISO 834: Measurements, numerical simulation and parameter study,” Fire Safety Journal, 43, pp. 325-333, 2008.
【12】K. Anderson, M. Gollie, “Heat transfer modeling of connections,” Proceedings of the Fifth International Conference on Structure in Fire, 2008.
【13】內政部營建署, “建築技術規則,”台灣, 2009.
【14】M. Tabaddow, P. D. Gandhi, G. Jones, “Thermo-mechanical analysis of fire doors subjected to a fire endurance test,” Journal of Fire Protection Engineers, Vol. 19(1),pp.51-71, 2009.
【15】CEN, Eurcode 1:Action on structures part 1.2:General Action – Actions on structures exposed to fire BS EN 1991-1-2:2002, Brussels: CEN, European Committee for Standardisation, 2002.
【16】Eurcode 3. Design of steel structure, part 1.2: general rules structural fire design, ENV 1993-1-2 European Committee for Standardisation, 1995.
【17】M. A. Lambert, L. S. Fletchert, “Review of models for thermal contact conductance of metals,” Journal of Thermophysics and Heat Transfer, vol. 11(2), pp. 129-140 , 1997.
【18】K. S. Al-Jabri, I. W. Burgess, T. Lennon, R. J. Plank,
“Moment-rotation-temperature curves for semi-rigid joints,” Journal of Constructional Steel Research, vol. 61(3), pp. 281-303, 2005.
【19】E. Hugi, K. G. Wakili, L. Wullschleger, “Measured and calculated temperature evolution on the room side of butted steel door frame subjected to the standard fire of ISO 834,” Fire Safety Journal, Vol. 4(5), pp.808-812, 2009.
【20】ISO 834, “Fire-resistance test –Element of building construction, Part 1;General requirements, 1999.