簡易檢索 / 詳目顯示

研究生: 葉彥良
Yeh, Yan_Liang
論文名稱: 有限元素法四邊形與六面體強化型元素之研究
The study of enriched quadrilateral and hexahedral elements for finite element analysis
指導教授: 何旭彬
Ho, Shi-Pin
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 87
中文關鍵詞: 有限元素法巧湊邊點元素拉格朗日元素靜態縮減法
外文關鍵詞: serendipity element, Lagrange element, static condensation, finite element
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文對有限元素法提出改善元素之內插函數的想法,在元素內部增加高階函數項以提高精確度,產生一系列四邊形和六面體強化型元素,並對其操作及效能進行討論。強化型元素內部選擇拉格朗日元素內部節點對應的內插函數,元素邊上節點對應的內插函數則由巧湊邊點元素的內插函數經克羅內克函數修正而得。所以強化型元素除了邊上節點外,內部插入節點以加入高階多項式。這些內部節點與其他元素節點不相連結的特性,所以可在產生元素係數矩陣時將其分離出來,不會造成全域聯立方程組維度增大的問題。
    在強化型元素的運用方面可利用靜態縮減法以及次參數單元形式簡化計算。靜態縮減的過程是對係數矩陣進行部分分解,因此能夠視為一個預加條件。而且這個預加條件矩陣是直接計算到每個係數矩陣的行列上,所以採用疊代法解聯立方程組時,可以再採用另一個預加條件矩陣。使用次參數單元形式來表示元素幾何不需要內部節點的座標,所以在網格化的過程中也不需要產生這些節點,因此強化型元素可以直接運用現有的網格化軟體。
    本文分別採用平面應力問題和三維彈力問題來驗證四邊形和六面體強化型元素的效能。由數值實驗結果發現強化型元素比起傳統的巧湊邊點元素更為準確,並且具有與巧湊邊點元素相同的收斂速率。在一階強化型元素的實驗中,一階強化型元素能夠有效降低誤差值,但是增加些微的計算時間。而二階和三階強化型元素不但能夠大幅地降低誤差值,更能使疊代法所需要疊代次數下降,進而節省總計算時間。

    Abstract
    The concept that adds the high order terms to the shape function of finite element method is presented to enrich the quadrilateral and hexahedral elements and the performance of the enriched elements is discussed in this thesis. The enriched elements combine the shape functions of interior nodes of the Langrage elements and the shape functions of the serendipity elements which are corrected by Kronecker delta function. Since the interior nodes of enriched elements don’t connect with any other element, their degree of freedom can be separated from the linear system.
    In order to simplify the use of enriched elements, both the static condensation and subparametric formulation are employed in finite element analysis. By the use of the static condensation technique at the element level, the extra computation time in using these elements can be ignored. The procedure can be seen that the coefficient matrix is applied a partial factorization. Therefore, static condensation can be regarded as a precondition. Since this precondition is applied directly to the entities of the coefficient matrix, the iterative method can use another precondition to solve the linear system. By the use of the subparametric formulation, the coordinates of the interior nodes are not necessary in the finite element analysis and the existing programs can generate the mesh for enriched elements.
    The plane stress problems and three dimensional elastic problems are used to evaluate the performance of enriched quadrilateral and hexahedral elements, respectively. It shows that the results obtained by using the enriched elements are more accurate than those of the traditional serendipity elements. The convergence rate of the proposed elements is the same as that of the traditional serendipity elements. In the numerical examples, the error norm of the first order enriched elements can be reduced when compared with the use of the traditional serendipity element, but the computation time is increased slightly. The use of the second and third order proposed elements not only give an improvement in element accuracy but also save computation time, when the precondition conjugate gradient method is used to solve the linear system. The saving of computation time is due to the decrease of iteration number.

    目錄 摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XI 符號說明 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機與目的 6 1.4 論文架構 8 第二章 相關理論 10 2.1 有限元素法與彈性力學基本方程式 10 2.2元素型態 15 2.2.1 拉格朗日系列元素 15 2.2.2 巧湊邊點系列元素 17 2.3 預加條件共軛梯度法解線性聯立方程組 18 2.3.1共軛梯度法 18 2.3.2預加條件 20 第三章 強化型元素之推導與操作 24 3.1 強化型元素之推導 25 3.2 靜態縮減法 29 3.3 次參數單元形式 33 第四章 數值實驗結果與討論 35 4.1 四邊形強化型元素數值實驗 37 4.1.1 高斯-雷尖德積分形式測試 37 4.1.2 精確度改善和求解時間的比較 40 4.1.3 中間圓孔平板測試實例 53 4.2 三維強化六面體元素數值實驗 54 4.2.1 高斯-雷尖德積分形式測試 55 4.2.2 精確度改善和求解時間的比較 57 4.2.3 六角扳手受集中負荷 71 第五章 結論與建議 73 5.1 效能綜合比較 73 5.2 建議使用元素 73 參考文獻 76 附錄 82 附錄A:強化型元素Q2S3L之內插函數 82 附錄B:強化型元素H2S3L之內插函數 83 自述 87

    參考文獻
    [1] Turner MS, Clough RW, Martin HC and Topp LJ. Stiffness and deflection analysis of complex structures. Journal of Aeronautical Science, 23(9):805-823, 1956.
    [2] Clough RW. The Finite Element Method in Plane Stress Analysis. Proceedings of 2nd conference on electronic Computation. Pittsburgh: American Society of Civil Engineers, 345-378, 1960.
    [3] Zienkiewicz OC and Cheung YK. The finite element method in structural and continuum mechanics :numerical solution of problems in structural and continuum mechanics. London: McGraw-Hill, 1967.
    [4] Argyris JH, Buck KE, Fried I, Maraczek G and Scharpf DW. Some new elements for matrix displacement methods. Proceedings of the Second Conference on Matrix Methods in Structural Mechanics. Ohio:Wright Patterson Air Force Base, 333-397, 1968.
    [5] Argyris JH and Fried I. The LUMINA element for matrix displacement method. Aeronautical Journal of Royal Aeronautical society, 72:514-517, 1968.
    [6] Herrmann LR. Efficiency evaluation of a two-dimensional incompatible finite element. Computers & Structures, 3:1377-1395, 1973.
    [7] Wilson EL, Taylor RL, Doherty WP and Ghaboussi J. Incompatible displacement models. In: Fenves SJ, et al editors. Numerical and Computer Methods in Structural Mechanics. New York: Academic Press, 1973.
    [8] Taylor RL, Beresford PJ and Wilson EL. A non-conforming element for stress analysis. International Journal for Numerical Methods in Engineering, 10:1211-1219, 1976.
    [9] Chen W and Cheung YK. The nonconforming element method and refined hybrid element method for axisymmetric solid. International Journal for Numerical Methods in Engineering, 39:2509-2529, 1995.
    [10] Taiebat HH and Carter JP, Three-dimension non-conforming elements, Research Report R808, Department of Civil Engineering, The University of Sydney, 2001.
    [11] Alves de Sousa RJ, Natal Jorge RM, Areias PMA, Fontes Valente RA and César de Sá JMA. Low order elements for 3D analysis. In: Mang HA, Rammerstorfer FG, Eberhardsteiner J, editors. Proceedings of the Fifth World Congress on Computational Mechanics. Austria: Vienna, 2002.
    [12] Macneal RH and Harder RL. Eight or Nine ?, International Journal for Numerical Methods in Engineering, 33:1049-1058, 1992.
    [13] Rathod HT and Sridevi K. General complete Lagrange family for the cube in finite element interpolations. Computer Methods in Applied Mechanics and Engineering, 181:295-344, 2000.
    [14] Rathod HT and Sridevi K. General complete Lagrange interpolations with applications to three-dimensional finite element analysis. Computer Methods in Applied Mechanics and Engineering, 190:3325-3368, 2001.
    [15] Celia MA and Gray WG. An improved isoparametric transformation for finite element analysis. International Journal for Numerical Methods in Engineering, 20:1443-1459, 1984.
    [16] Citipitioglu E. Universal serendipity elements. International Journal for Numerical Methods in Engineering, 19:803-810, 1983.
    [17] Utku M. An improved transformation for universal serendipity elements. Computers and Structures, 73:199-206, 1999.
    [18] Kikuchi F, Okabe M and Fujio H. Modification of the 8-node serendipity element. Computer Methods in Applied Mechanics and Engineering, 179:91-109, 1999.
    [19] Cook RD, Malkus DS, Plesha ME and Witt RJ. Concepts and applications of finite element analysis. New York: John Wiley & Sons, 2002.
    [20] Auricchio F and Taylor RL. A triangular thick plate finite element with an exact thin limit. Finite Elements in Analysis and Design, 19:57-68, 1995.
    [21] Hong WI, Kim YH and Lee SW. An assumed strain triangular solid shell element with bubble function displacements for analysis of plates and shells. International Journal for Numerical Methods in Engineering, 52:455-469, 2001.
    [22] Kemp BL, Cho C and Lee SW. A four-node solid shell element formulation with assumed strain, 43:909-924, 1998.
    [23] Pinsky PM and Jasti RV. A mixed finite element formulation for Reissner-Mindlin plates based on the use of bubble functions. International Journal for Numerical Methods in Engineering, 28: 1677-1702, 1989.
    [24] Baiocchi C, Brezzi F and Franca LP. Virtual bubbles and Galerkin-least-squares type methods(Ga.L.S). Computer Methods in Applied Mechanics and Engineering, 105:125-141, 1993.
    [25] Brezzi F, Bristeau MO, Franca LP, Mallet M and Roge G. A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Computer Methods in Applied Mechanics and Engineering, 96:117-129, 1992.
    [26] Brezzi F and Russo A. Choosing bubbles for advection-diffusion problems. Mathematical Models and Methods in Applied Sciences, 4(4):571-587, 1994.
    [27] Franca LP and Farhat C. Bubble functions prompt unusual stabilized finite element methods. Computer Methods in Applied Mechanics and Engineering, 123:299-308, 1995.
    [28] Franca L and Farhat C. On the limitation of bubble functions. Computer Methods in Applied Mechanics and Engineering, 117:225-230, 1994.
    [29] Brezzi F, Hughes TJR, Marini LD, Russo A and Suli E. A priori error analysis of residual-free bubbles for advection-diffusion problems. SIAM Journal on Numerical Analysis, 36(6):1933-1948, 1999.
    [30] Sangalli G. Global and local error analysis for the residual-free bubbles method applied to advection-dominated problems. SIAM Journal on Numerical Analysis, 38(5):1496-1522, 2000.
    [31] George A and Liu JWH. Computer solution of large sparse positive definite systems. Englewood Cliffs: Prentice-Hall,1981.
    [32] Hood P. Frontal solution program for unsymmetric matrices. International Journal for Numerical Methods in Engineering, 10:379-399, 1976.
    [33] Irons BM. A frontal solution program for finite element analysis. International Journal for Numerical Methods in Engineering, 2:5-23, 1970.
    [34] Melosh RJ and Bamford RM. Efficient solution of load-deflection equations. ASCE Journal of the Structural Division, 95(4): 661-676, 1969.
    [35] Lanczos C. Solution of systems of linear equation by minimized iterations. Journal of Research of the National Bureau of Standards, 49(145):33-53, 1952.
    [36] Parlett BN and Scott DS. The Lanczos algorithm with selective orthogonalization. Mathematics of Computation, 33:217~238, 1979.
    [37] Saad Y. On the Lanczos method for solving symetric linear system with several right-hand sides”, Mathematics of Computation, 48(178):651~662, 1987.
    [38] Simon HD. The Lanczos algorithm with partial reorthogonalization. Mathematics of Computation, 42(165):115-142, 1984.
    [39] Axelsson O and Lindskog G. On the eigenvalue distribution of a class of preconditioning methods. Numerische Mathematik, 48:479-498, 1986.
    [40] Axelsson O. Iteration number for the conjugate gradient method. Mathematics and Computers in Simulation, 61:421-435, 2003.
    [41] Hestense MR and Stiefel E. Methods of conjugate gradients for solving linear system. Journal of Research of the National Bureau of Standards, 49:409~436, 1952.
    [42] Nicoaides RA. Deflated of conjugate gradient with applications to boundary value problems”, SIAM Journal on Numerical Analysis, 24(2):355-356, 1987.
    [43] Papadrakakis M and Yakoumidakis M. A partial preconditioned conjugate gradient method for large eigenproblems. Computer Methods in Applied Mechanics and Engineering, 62:195-207, 1987.
    [44] Papadrakakis M and Bitoulas N. Accuracy and effectiveness of preconditioned conjugate gradient algorithms for large and ill-conditioned problems. Computer Methods in Applied Mechanics and Engineering, 109:219-232, 1993.
    [45] Morgan RB. GMRES with deflated restating. SIAM Journal on Scientific Computing, 24(1):20-37,2002.
    [46] Paige CC and Strakos Z. Residual and backward error bounds in minimum residual Krylov subspace method. Numerical Linear Algebra with Applications, 23(6):1899-1924, 2002.
    [47] Saad Y and Schultz MH. GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computating, 7(3):856-869, 1986.
    [48] Vorst HA and Vuik C. GMRESR: A family of nested GMRES methods, Numerical Linear Algebra with Applications, 1:369-386, 1994.
    [49] Golub GH, Van Loan CF. Matrix computations. London: Johns Hopkins, 1996.
    [50] Farhat C and Sobh N. A coarse/fine preconditioner for very ill-conditioned finite element problems. International Journal for Numerical Methods in Engineering, 28:1715-1723, 1989.
    [51] Zienkiewicz OC and Taylor RL. The finite element method - volume 1 basic formulation and linear problems. London: McGraw-Hill, 1989.
    [52] Boresi AP and Chong KP. Elasticity in engineering mechanics. New York: John Wiley & Sons, 2000.
    [53] Macneal RH and Harder RL. A proposed standard set of problems to test finite element accuracy. Finite Element in Analysis and Design, 1:3-20, 1985.

    下載圖示 校內:2007-07-10公開
    校外:2007-07-10公開
    QR CODE