簡易檢索 / 詳目顯示

研究生: 陳韋祐
Chen, Wei-You
論文名稱: 應用於波浪發電之葉片與發電機整合設計與實現
Integrated Design and Realization of Turbine and Generator for Wave Energy Conversion
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 162
中文關鍵詞: Savonius葉片Darrieus葉片系統分析系統設計發電機設計
外文關鍵詞: Savonius turbine, Darrieus turbine, system analysis, system design, generator design
相關次數: 點閱:108下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對震盪水柱式(Oscillating Water Column)波浪發電系統設計一葉片與發電機,並進行匹配分析與討論。首先針對渦輪葉片種類進行探討,由於波浪發電沉箱出口風速為交互變動流速,然而其渦輪葉片須在此狀況下持續運轉。故本論文選擇垂直軸之Savonius葉片與Darrieus葉片作為研究對象,藉由計算流體力學軟體運算,探討不同葉片外型參數下葉片之輸出特性,從中選出適合本沉箱架構之葉片,並於波浪發電沉箱架構下模擬其特性。此外,本論文根據葉片輸出特性,將葉片輸出特性以數學方程式表示之,藉由改變發電機參數與後端電力負載,進行系統匹配分析,以提出一系統設計方法,並獲得適合本系統之發電機設計,可在各種波浪條件下輸出葉片最大功率,且維持其高效率。本文所設計之葉片與發電機,經實驗驗證其輸出功率符合預期。

    This thesis focuses on system analysis and design of a turbine and generator for oscillating water column (OWC) wave energy converter. Firstly, the turbine categories are discussed so that an appropriate turbine is selected. The airflow through the OWC chamber outlet is alternating so that bi-directional turbines should be used to maintain the turbine rotational direction. Therefore, vertical-axis Savonius and Darrieus turbines are chosen for this study. By using computational fluid dynamics (CFD) analysis, different parameters of the turbines are discussed and the turbine that fits the investigated OWC can be selected. The simulation for turbines installed on the OWC is also performed to understand the power output of the system. According to the turbine output characteristics, proper generators can be designed and a systematic design approach is proposed. This will ensure the system to operate at the maximum output at various wave conditions and maintain the generator efficiency. The design of the turbine and generator are verified by both the CFD simulation and experiments.

    中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 IX 圖目錄 X 符號表 XIX 第一章 緒論 1 1.1研究背景 1 1.2 研究動機與目的 2 1.3 本文架構 5 第二章 文獻回顧 6 2.1 波浪能概述 6 2.2 國外波浪發電之發展概況 8 2.3 葉片特性 14 2.4 永磁發電機之探討 18 第三章 葉片選用與參數分析 20 3.1 渦輪葉片之分類 20 3.2葉片作動原理 24 3.3 葉片之物理模型建立與數值模擬 29 3.3.1 數值理論 29 3.3.2 模型與網格的建立 31 3.3.3 邊界條件的設定 33 3.3.4 求解 33 3.3.5 Savonius葉片數值模型準確度驗證 34 3.3.6 Darrieus葉片數值模型準確度驗證 37 3.3.7風洞阻塞比之影響 40 3.4 SAVONIUS葉片之參數分析 42 3.5 DARRIEUS葉片之參數分析 59 3.6 沉箱之最佳波浪週期驗證 75 3.6.1額定風速之計算 77 3.7風洞架構模擬特性分析 79 3.8沉箱架構模擬特性分析 83 3.9葉片與發電機的匹配特性分析 94 3.9.1葉片與發電機的最佳功率匹配 95 3.9.2發電機規格制定 99 3.9.3系統設計流程 100 第四章 永磁發電機之設計 104 4.1發電機之輸出電壓與轉矩參數 104 4.2發電機設計流程 107 4.3 發電機額定規格制定 109 4.3.1發電機主要尺寸 109 4.3.2槽極比 109 4.3.3永磁磁石選用 110 4.3.4矽鋼片選用 112 4.3.5反電動勢常數之設計 113 4.4永磁無刷發電機之磁路模型分析 113 4.4.1永磁無刷發電機之氣隙磁通密度推導 115 4.4.2磁鐵尺寸設計 119 4.4.3氣隙磁通密度之設計 121 4.4.4發電機細部尺寸 121 4.5繞組設計 125 4.5.1匝數設計 129 4.5.2線徑選擇 129 4.6電磁模擬軟體 131 4.7 發電機特性模擬 132 4.7.1發電機磁通密度 132 4.7.2磁路模擬驗證 133 第五章 實驗結果與分析 136 5.1實驗架構 136 5.1.1波高計特性量測 139 5.1.2 沉箱出口風速量測 141 5.2發電機測試結果 142 5.3發電機與葉片匹配結果 146 5.4整體實驗結果與分析 148 第六章 結論與建議 149 參考文獻 151 附錄A 156 附錄B 157 自述 162

    [1]中華民國物理協會物理雙月刊,淺談我國海洋能源之開發前景,2007。
    [2]Chen Y., P. Pillay and A. Khan, “PM wind generator topologies”, IEEE Transactions on Industrial Applications, vol. 41, No.6, pp. 1619 – 1626,2005.
    [3]褚同金,海洋能資源開發利用,化學工業出版社,2005。
    [4]任建莉,鐘英杰,張雪梅,徐璋,海洋波能發電的現狀與前景,2006。
    [5]T. W. Thorpe, “An overview of wave energy technologies: Status, Performance and Costs”, London, 30 Nov. 1999.
    [6]T. J. T. Whittaker etals, “Identification of non-linear flow characteristics of LIMPET shoreline OWC”, International Offshore and Polar Engineering Conference, Kyushu, Japan, 2002.
    [7]工業技術研究院,我國海域能源蘊藏量分析技術之建立及開發方向評估,經濟部能源科技研究報告-94年度執行報告,5頁,2006。
    [8]英國再生能源:風力與海洋能源,英國貿易投資署2010年5月出版。
    [9]余志,在挪威研究波浪能.海洋工程,14(4):84-91,1996。
    [10]陳思鑒,國外海洋能研究開發的現狀及展望.新能源,17(1):16-21,1995。
    [11]毛秀珍,徐春椿,海洋能是人類未來能源的希望,今日科技,2:5-6,1998。
    [12]I. Masaaki, W. Yukihisa, O. Hirotaka, “Development of an offshore floating type wave power energy converter system”, Mighty Whale, Science & Technology, Japan, 60(15):28-30, 1997.
    [13]杜文朋,包鳳英,戴哈莉,淺談當今世界海洋發電的發展趨勢,廣東電力,14(1):16-18,2001。
    [14]簡水靖,徐宗琦,林伶如,國內波浪發電前景探討,28(3):119-126,1998。
    [15]余志,蔣念東,王傳,大萬山岸式震盪水柱波力電站的輸出功率,海洋工程,14(2):77-82,1996。
    [16]游亞戈,國內外波能裝置介紹,2003。
    [17]J. L. Menet, “A double-step savonius rotor for local production of electricity: a design study”, Renewable Energy 29, 2004.
    [18]倪受元,風力機的類型與種類,風力發電講座,7-8,2000。
    [19]工業技術研究院,我國海域能源蘊藏量分析技術之建立及開發方向評估,經濟部能源科技研究報告-94年度執行報告,135頁,2006。
    [20]B. J. Chalmers, W. Wu and E. Spooner, “An axial-flux permanent-magnet generator for a gearless wind energy system”, IEEE Transactions on Energy Conversion, vol. 14, No. 2, pp. 251–257, Jun. 1999.
    [21]Chen J., C. V. Nayar and L. Xu, “Design and finite-element analysis of an outer-rotor permanent-magnet generator for directly coupled wind turbines”, IEEE Transactions on Magnetics, vol. 36, No. 5, pp. 3802–3809, Sep. 2000.
    [22]L. Soderlund and J. T. Eriksson, “A permanent-magnet generator for wind power applications”, IEEE Transactions on Magnetics, vol. 32, No. 4, pp. 2389–2392, Jul. 1996.
    [23]D. G. Dorrell, “Design requirement for brushless permanent magnet generators for use in small renewable energy systems”, Proceedings of IEEE Industrial Electronics Society Annual Meeting, IECON 2007, Taiwan, Nov. 2007.
    [24]D. G. Dorrell, “Permanent magnet generators for renewable energy devices with wide speed range and pulsating power delivery”, International Forum on Systems Mechatronics, IFSM 2007, Taiwan, Dec. 2007.
    [25]D. Hanselman, Brushless permanent magnet motor design. The Writers’ collective, Cranston, Rhode Island, 2003.
    [26]John F. Walker and Nicholas Jenkins, Wind energy technology. John Wiley & Sons, 1 edition, Jun. 12, 1997.
    [27]徐彬堯,風車葉片運動模擬與動態分析,國立成功大學航空太空工程學系碩士論文,2005。
    [28]江易儒,金屬工業研究發展中心,風力機葉片數目對性能的影響,2006。
    [29]蔡逸峰,小型風力發電機葉片設計,馬達電子報,第229期,2007。
    [30]R. E. Wilson, and Lissaman, P.B.S., “Applied aerodynamics of wind power machines”, NTIS PB 238594, Oregon State University, 1974.
    [31]嚴坤政,小型風力發電系統設置與葉片氣動力分析,南台科技大學機械工程學系碩士論文,2004。
    [32]N. Miyoshi, I. Shouichiro and I. Toshihiko, “Performance of double-step savonius rotor for environmentally friendly hydraulic turbine”, Journal of Fluid Science and Technology, vol3, No.3, 2008.
    [33]T. Manabu, T. Hiroyuki, S. Yohei, M. Takao, K. Yasunari and T. Kazuhiko, “Experimental study of a straight-bladed vertical axis wind turbine with a directed guide vane row”, ASME, 2009.
    [34]R. E. Sheldahl, “Comparison of field and wind tunnel darrieus wind turbine data”, Sandia National Laboratories, SAND80-2469, 1981.
    [35]R. E. Sheldahl and B.F. Blackwell, “Wind tunnel performance data for the darrieus wind turbine with NACA0012 blades”, SAND76-0130, 1977.
    [36]A. Pope and H. Barlow, “Low-speed wind tunnel testing”, John Wiley&Sons, 1999.
    [37]R. J. Templin, “Aerodynamic performance theory for the NRC VAWT”, National Research Council of Canada, LTR-LA-160, June, 1974.
    [38]謝銘峻,謝旻甫,金屬工業研究發展中心,Darrieus風機葉片數與扭轉角度對風機性能的影響,2010。
    [39]林繼謙,岸基震盪水柱式波浪發電系統之設計,國立成功大學系統及船舶機電工程學系碩士論文,2009。
    [40]茆尚勳,直驅式跑步機用直流無刷馬達之設計,國立成功大學機械工程學系碩士論文,2002。
    [41]麗鋼工業有限公司矽鋼片,http://www.iproducts.com.tw/。
    [42]Status and Research and Development Priorities: Wave and marine current energy, International Energy Agency, IEA, 2003.
    [43]K. Jahangir and Gouri S. Bhuyan, Ocean Energy Global Technology Development Status-Final Technical Report, No.T0104, Mar. 2009.

    下載圖示 校內:2016-08-03公開
    校外:2016-08-03公開
    QR CODE