| 研究生: |
鄭茗元 Zheng, Ming-Yuan |
|---|---|
| 論文名稱: |
SKD61硬化模具鋼銑削特性之探討 Investigation of the Milling Characteristics of Hardened SKD61 Tool Steel |
| 指導教授: |
王俊志
Wang, J-J Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | SKD61模具鋼 、犁切 、剪切 、刀腹磨耗 |
| 外文關鍵詞: | shearing, SKD61 tool steel, ploughin, flank wear |
| 相關次數: | 點閱:86 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本文中分別藉由面銑刀與球銑刀解析銑削力模式,探討SKD61硬化模具鋼材料銑削特性對於剪切與犁切機制之影響。其中於面銑加工當中,探討刀腹磨耗變化量分別對於剪切與犁切切削常數所造成之影響予以分析,根據實驗結果發現當刀具磨耗寬度增加時,對於剪切切削常數影響不大,而在切向犁切切削常數則明顯與刀具磨耗寬度呈正比的關係式。其次,在球銑削加工中,對於硬化與未硬化SKD61模具鋼銑削特性研究中發現,未硬化SKD61模具鋼於銑削加工中剪切與犁切切削常數數值大小均比硬化SKD61模具鋼還要來得大,而工件表面粗糙度也比硬化SKD61模具鋼還粗糙。
Abstract
This thesis investigates the influence of shearing and ploughing mechanism on milling characteristics of the hardened SKD61 tool steel by the analytical force models on face milling and ball end milling processes. The effect of flank wear on shearing and ploughing cutting constants is then studied through milling experiments. According to the experiments results, it is shown that increase of the flank wear only affects the shearing cutting constant slightly , but the ploughing cutting constant increases significantly with the flank wear.
The cutting constants of hardened and unhardened SKD61 tool steels are compared for ball-end milling process。The magnitude of shearing and ploughing cutting constants on unhardened SKD61 tool steel is larger than on hardened tool steel. And, the surface roughness on unhardened tool steel is rougher than hardened tool steel.
參考文獻
1. Kline, W. A., DeVor R. E., Snareef I. A., “The Prediction of Surface Accuracy in End Milling,” J. of Engineering for Industry, Vol. 104, pp. 272-278, August 1982.
2. Ber, A., Goldblatt M., “The Influence of Temperature Gradient on Cutting Tool’s life,” CIRP annals, Vol. 38, pp.69-73, 1989.
3. Koenigsberger, F., Sabberwal, A. J. P., “An Investigation into the Cutting Force Pulsations During Milling Operations,” International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33,1961.
4. Tlusty, J., and MacNeil, P., “Dynamics of Cutting Forces in End Milling,” CIRP annals, Vol. 24, pp. 21-25, 1975.
5. Eneres W. J., DeVor R.E., Kapoor S. G., “A Dual-Mechanism Approach to the Prediction of Machining Forces,” ASME Journal of Engineering for Industry, Vol. 117, pp. 526-541, 1995.
6. Wang, J.-J., Liang, S.Y.,Book, W.J., “Convolution Analysis of Milling Force Pulsation,” ASME Journal of Engineering for Industry, Vol. 116, pp.17-25, 1994.
7. .Wang, J.-J, Zeng , C. M., “Identification of Shearing and Ploughing Cutting Constant from Average Forces in Ball-End Milling,” International Journal of Machine Tools & Manufacture, 42, pp. 695-705, 2002.
8. Sarhan, A., Sayed R., Nassr A. A., El-Zahry R. M., “Interrelationships Between Cutting Force Variation and Tool Wear in End-Milling,” Jouranl of Materials Processing Technology, Vol. 109, pp. 229-235, 2001.
9. Elanayar, S., Shin, Y. C., “Modeling of Tool Forces for Worn Tools: Flank Wear Effects,” ASME Journal of Manufacturing Science and Engineering, 118, pp. 359-366, 1996.
10. Altan, T., P. Fallbohmer, C. A. Rodriguenz ,T .Ozel, “High-speed machining of cast iron and alloy steels for die and mold manufacturing,” Jounary of Material Processing Technology , Vol. 98, pp. 104-115, 2000.
11. El-Wardany, T. I., Kishawy, H. A., Elbestwi, M. A., “Surface Integrity of Die Material in High Speed Hard Machining, Part 2: Microhardness Variations and Residual Stress,” ASME Journal of Manufacturing Science and Engineering, 122, pp. 632-641, 2000.
12. Vyas, A., Shaw, M. C., “Mechanics of Saw-Tooth Chip Formation in Metal Cutting,” ASME Journal of Manufacturing Science and Engineering, 121, pp. 163-172, 1999.
13. Gerard, P., Alphonse, L., “Hard Turning :Chip Formation Mechanisms and Metallurgical Aspects,” ASME Journal of Manufacturing Science and Engineering, 122, pp. 406-412., 2000.
14. El-Wardany, T. I., Kishawy, H. A., Elbestwi, M. A., “Surface Integrity of Die Material in High Speed Hard Machining, Part 1: micrographical Analysis,” ASME Journal of Manufacturing Science and Engineering, 122, pp. 620-631, 2000.
15. Yuan Ning , M. Rahman, Y.S wong , “Investigation of chip formation in high speed end milling,” Jounary of Material Processing Technology ,Vol. 113, pp. 360-367, 2001.
16. Oishi, K., “Built-up Edge Elimination in Mirror Citting of Hardemed Steel,” J. of Engineering for Industry, Vol. 117, pp. 62-66, February, 1995.
17. Wang J. J., Zheng, C. M., “An analytical force model with shearing and ploughing mechanisms for end milling,” International Journal of Machine Tools & Manufacture, 42, pp. 761-771, 2002.
18. Budak, E., Altintas, Y., Armarego, E. J. A., “Prediction of Milling Force Coefficients From Orthogonal Cutting Data,” ASME Journal of Manufacturing Science and Engineering, 118, pp. 216-224, 1996.
19. 張煌權, 包含側邊及底面犁切力之端銑及面銑力模式, 國立成功大學機械研究所, 九十年碩士論文.
20. 黃朝鈺, 球銑刀之步進銑削之銑削力及穩定性為基礎, 國立成功大學機械研究所, 九十年碩士論文.
21. Shaw, M. C., “A Quantitized Theory of Strain Hardening as Applied to the Cutting of Metal,” Jounary of Applied Physics, Vol. 21, pp.599, 1950.
22.湯富俊, TiAlN鍍膜碳化鎢刀具高速銑削硬化SKD61模具鋼之研
究, 國立清華大學機械研究所, 八十九年碩士論文.