簡易檢索 / 詳目顯示

研究生: 謝文斌
Hsieh, Wen-Bin
論文名稱: 由緩坡方程式求解不規則波浪變形之研究
A Study on Simulation of Irregular Wave Deformation by Mild-Slope Equation
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 89
中文關鍵詞: 不規則波緩坡方程式波波交互作用波譜分割法
外文關鍵詞: wave-wave interaction, mild-slope equation, spectral method, irregular waves
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為應用能譜觀念以緩坡方程式所建立之數值模式,由能量通率觀點在方程式中加入能量消散係數,處理非線性淺化效應、碎波效應及非線性波波交互作用求解不規則波浪問題,探討等頻率分割法和混合分割法在處理不規則波浪變形、週期和波譜形狀變化之適切性。並與 SWAN 風浪數值模式之測試結果比較,驗證模式於模擬二維平面不規則波場上之可行性。模式計算結果經與試驗結果比較後得知:混合分割法在處理不規則波浪變形、週期和波譜形狀變化上較等頻率分割法為佳,呈現良好之一致性。基於不失不規則波浪特性及提升計算效率的考量下,選取切割波數為30個時,在模式計算結果上有不錯的表現。

    In this study, we apply mild slope equation with spectral method to simulate transformation of irregular waves, and add the energy coefficient into the governing equation in terms of energy flux to deal with nonlinear shoaling、wave breaking and wave-wave interaction. First, divide the significant wave spectrum into different numbers of component waves with different spectral methods. Then we simulate the transformation of irregular waves to investigate equal frequency space and exponential frequency space methods. Meanwhile, the validity of the present model in two-dimensional problem is verified through comparisons with the results of the SWAN model. Comparisons of measured data and numerical results indicate that exponential frequency space wave cutting method is better than equal frequency space wave cutting method. Using exponential frequency space wave cutting method to get 30 component waves has good ability and computational efficiency for simulation of wave height, period and spectrum shape.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 符號說明 Ⅸ 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 3 1-3 本文組織 7 第二章 理論基礎 9 2-1 控制方程式 9 2-2 能量消散係數 11 2-2-1 非線性淺化效應 12 2-2-2 碎波能量消散效應 14 2-2-3 非線性三波交互作用效應 15 2-3 邊界條件及起始條件 16 2-3-1 邊界條件 16 2-3-2 起始條件 19 第三章 數值方法與波譜分割法 21 3-1 數值方法 21 3-2 收斂條件 22 3-3 波譜分割法 23 3-4 波譜分割數之決定 25 第四章 修正型緩坡方程式 28 4-1 修正型緩坡方程式之理論 28 4-2 模式適用性 32 第五章 SWAN 模式 35 5-1 SWAN模式之理論 35 5-2 數值模式 40 第六章 結果與討論 42 6-1 波譜分割方式之比較 42 6-2 綜合討論 69 6-3 模式計算結果比較 71 第七章 結論與建議 81 7-1 結論 81 7-2 建議 82 參考文獻 83

    1. Arcilla, A.S., J.A. Roelvink, B.A. O’Connor, A.J.H.M. Reniers, and J.A. Jimenez, “The Delta flume ’93 experiment,” Proc. Coastal Dynamics Conf., Barcelona, Spain, pp. 488-502 (1994).
    2. Armstrong, J.A., N. Bloembergen, J. Ducuing and P.S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Physical Review, Vol. 127, pp. 1918-1939 (1962).
    3. Battjes, J.A. and J.P.F.M. Janssen, “Energy Loss and Set-up due to Breaking of Random Waves,” Proceedings of 16th International Conference on Coastal Engineering, ASCE, Hamburg, pp. 569-587 (1978).
    4. Beji, S., and J. A. Battjes, “Experimental Investigation of Wave Propagation over a Bar,’’ Coastal Engineering, Vol. 19, pp. 151-162 (1993).
    5. Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction,” Proceedings of 13th International Conference on Coastal Engineering, ASCE, Canada, pp. 471-490 (1972).
    6. Bertotti, L. and L. Cavaleri, “Accuracy of Wind and Wave Evaluation in Coastal Regions,” Proceedings of 24th International Conference on Coastal Engineering, ASCE, Kobe, pp. 57-67 (1994).
    7. Black, K.P. and M.A. Rosenberg, “Semi-Empirical Treatment of Wave Transformation Outside and Inside the Breaking Line,” Coastal Engineering, Vol. 16, pp. 313-345 (1992).
    8. Booij, N., “Gravity Waves on Waver With Non-Uniform Depth and Current,” Rep. No. 81-1, Dept. Civil Engrg., Delft Univ. of Tech., Delft, The Netherlands (1981).
    9. Booij, N., L.H. Holthuijsen and R.C. Ris, “The SWAN Wave Model for Shallow Water,” Proceedings of 24th International Conference on Coastal Engineering, ASCE, Orlando, Vol. 1, pp. 668-676 (1996).
    10. Bretherton, F.P., “Resonant Interactions between Waves: The Case of Discrete Oscillations,” Journal of Fluid Mechanics, Vol. 20, pp. 457-480 (1964).
    11. Bretschneider , C.L., ‘‘Significant Waves and Wave Spectrum,’’ Ocean Industry, pp. 40-46 (1968).
    12. Cavaleri, L. and P. Malanotte-Rizzoli, “Wind Wave Prediction in Shallow Water Theory and Applications,” Journal of Geophysical Research, Vol. 86, No. C11, pp. 10961-10973 (1981).
    13. Eldeberky, Y. and J.A. Battjes, “Parameterization of Triad Interactions in Wave Energy Models,” Proceedings of Coastal Dynamics Conference ’95, Gdansk, Poland, pp. 140-148 (1995).
    14. Eldeberky, Y., Nonlinear Transformation of Wave Spectra in the Nearshore Zone, Ph.D. thesis, Department of Civil Engineering, Delft University of Technology, The Netherlands (1996).
    15. Elgar, S., R.T. Guza and M.H. Freilich, “Observations of Nonlinear Interactions in Directionally Spread Shoaling Surface Gravity Waves,” Journal of Geophysical Research, Vol. 98, pp. 20299-20305 (1993).
    16. Goda, Y. and K. Nagai, ‘‘Report of the Port and Harbour,’’ Res. Inst., No. 61, pp.64 (1968).
    17. Goda, Y., “Random Seas and Design of Maritime Structures,” University of Tokyo Press, pp. 323 (1985).
    18. Goda, Y., “A Comparative review on the functional forms of directional wave spectrum,” Coastal Engineering Journal, Vol. 41, No. 1, pp.1-20 (1999).
    19. Hasselmann, K., “On the nonlinear energy transfer in a gravity wave spectrum-Part 1 General theory,” J. Fluid Mech., Vol. 12, pp.481-500 (1962).
    20. Hasselmann, K., “On the nonlinear energy transfer in a gravity wave spectrum-Part 2 Conservation theorems; wave-particle analogy; irreversibility”, J. Fluid Mech., Vol. 15, pp.273-281 (1963a).
    21. Hasselmann, K., “On the nonlinear energy transfer in a gravity wave spectrum-Part 3 Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum,” J. Fluid Mech., Vol. 15, pp.385-398 (1963b).
    22. Hasselmann, K., “On the Spectral Dissipation of Ocean Waves due to Whitecapping,” Bound.-layer Meteor., Vol. 6, No. 1-2, pp. 107-127 (1974).
    23. Hasselmann, K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W. Sell and H. Walden, “Measurements of Wind-wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP),” Dtsch. Hydrogr. Z. Suppl., 12, A8 (1973).
    24. Hasselmann, S. and K. Hasselmann, J.H. Allender and T.P. Barnett, “Computations and Parameterizations of the Linear Energy Transfer in a Gravity Wave Spectrum. Part II : Parameterizations of the Nonlinear Transfer for Application in Wave Models,” Journal of Physical Oceanography, Vol. 15, No. 11, pp. 1378-1391 (1985).
    25. Hsu, T.W. and Wen, C.C., “On Radiation Boundary Conditions and Wave Transformation Across Surf Zone,” China Ocean Engineering, Vol. 15, pp. 405-416 (2001a).
    26. Hsu, T.W. and Wen, C.C., “A Parabolic Equation Extended to Account for Rapidly Varying Topography,” Ocean Engineering, Vol. 28, pp. 1479-1498 (2001b).
    27. Isobe, M., “ Time-dependent Mild Slope Equation for Random Waves,” Proceedings of 24th International Conference on Coastal Engineering, ASCE, pp. 285-299 (1994).
    28. Isobe, M., “A Parabolic Equation Model for Transformation of Irregular Waves due to Refraction, Diffraction and Breaking,” Coastal Engineering in Japan, Vol. 30, pp. 33-47 (1987).
    29. Isobe, M., Y. Shibata, T. Izumiya, and A. Watanabe, “Set-up Due to Irregular Waves on a Reef,” 第 35 回海岸工學講演會論文集, pp. 192-196 (1988). (In Japanese)
    30. Izumiya, T. and M. Endo, “Wave Reflection and Transmission Due to a Submerged Breakwater,” 第 36 回海岸工學講演會論文集, pp. 638-642 (1989). (In Japanese)
    31. Janssen, P.A.E.M., “Quasi-linear Theory of Wind-wave Generation Applied to Wave Forecasting,” Journal of Physical Oceanography, Vol. 21, pp. 1631-1642 (1991).
    32. Komen, G. J., S. Hasselmann, and K. Hasselmann, “On the Existence of a Fully Developed Wind-sea Spectrum,” Journal of Physical Oceanography, Vol. 14, pp. 1271-1285 (1984).
    33. Kubo, Y., Y. Kotake, M. Isobe, and A. Watanabe, “ Time dependent Mild Slope Equation for Random Waves,” Proceedings of 23th International Conference on Coastal Engineering, ASCE, pp. 419-431 (1992).
    34. Li, B., “An Evolution Equation for Water Waves,” Coastal Engineering, Vol. 23, pp. 227-242 (1994a).
    35. Li, B., “A Generalized Conjugate Gradient Model for the Mild Slope Equation,” Coastal Engineering, Vol. 23, pp. 215-225 (1994b).
    36. Li, B., D.E. Reeve, C.A. Fleming, “Numerical Solution of the Elliptic Mild-Slope Equation for Irregular Wave Propagation,” Coastal Engineering, Vol. 20, pp. 85-100 (1993).
    37. Longuet-Higgins, M.S., “On the Statistical Distributions of the Height of Sea Waves,” Jour. Marine Res., Vol. IX, No. C5, pp. 245-266 (1952).
    38. Longuet-Higgins, M.S., “The refraction of sea waves in shallow water,” J. Fluid Mech., Vol. 1, pp.163-176 (1956).
    39. Luth, H.R., G. Klopman, and N. Kitou, ‘‘Kinematics of Waves Breaking Partially on an Offshore Bar,’’ Rep. H1573, 13 pp., Delft Hydraulics, Delft, Netherlands (1993).
    40. Madsen, P.A. and O.R. Sørensen, “Bound Waves and Triad Interactions in Shallow Water,” Ocean Engineering, Vol. 20, No. 4, pp. 359-388 (1993).
    41. McCowan, J., “On the Highest Wave of Permanent Type,” Philos. Mag. Edinburgh, 38(5), pp. 351-358 (1894).
    42. Mei, C.C., “Applied Dynamics of Ocean Surface Wave,” John Wiley and Sons, New York, pp. 86-88 (1983).
    43. Nagai, K., “Computation of Refraction and Diffraction of Irregular Sea,” Rep. of the Port and Harbor Res. Inst., Vol. 11, No. 2, pp. 47-119, June (1972).
    44. Phillips, O.M., “On the Dynamics of Unsteady Gravity Waves of Finite Amplitude, Part 1,” Journal of Fluid Mechanics, Vol. 9, pp. 193-217 (1960).
    45. Pierson, W.J. and L. Moskowitz, “A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S.A. Kitaigorodskii,” Journal of Geophysical Research, Vol. 69, No. 24, pp. 5181-5190 (1964).
    46. Radder, A.C., “On the Parabolic Equation Method for Water Wave Propagation,” Journal of Fluid Mechanics, Vol. 95, No. 1, pp. 159-176 (1979).
    47. Rojanakamthorn, S., M. Isobe, and A. Watanabe, “A Mathematical Model of Wave Transformation Over a Submerged Breakwater,” Coastal Engineering in Japan, Vol. 32, No. 2, pp. 209-234 (1989).
    48. Rojanakamthorn, S., M. Isobe, and A. Watanabe, “Modeling of Wave Transformation on Submerged Breakwater,” Proceedings of 22th International Conference on Coastal Engineering, ASCE, pp. 1060-1073 (1990).
    49. Shuto, N., “Nonlinear Long Waves in a Channel of Variable Section,” Coastal Engineering in Japan, Vol. 17, pp. 1-12 (1974).
    50. Sommerfeld, A., “Mechanics of Deformable Bodies,” Vol. 2 of Lectures on Theoretical Physics, Academic Press, New York (1964).
    51. Tang, F.L.W. and Lin, C.F., “Practical Method for Evaluation Directional Spectra After Shoaling and Refraction,” Proc. 20th Conf. Eng., pp. 780-793 (1986). (In Taipei)
    52. Tsai, C.P., Chen, H.B. and Hsu, H.T., “Estimation of Wave Height Deformation in Surf Zone,” Journal of Harbor Technology, Vol. 10, No. 1, pp. 93-111 (1995). (In Chinese)
    53. Tsai, C.P., Chen, H.B. and Hsu, R.C., “Calculations of Wave Transformation Across the Surf Zone,” Ocean Engineering, Vol. 28, No. 8, pp 941-955 (2001).
    54. Watanabe, A. and M. Dibajnia, “A Numerical Model of Wave Deformation in Surf Zone,” Proceedings of 21th International Conference on Coastal Engineering, ASCE, Malaga, Spain, pp. 578-587 (1988).
    55. Watanabe, A. and Maruyama, K., “Numerical Modeling of Nearshore Wave Field under Combined Refraction, Diffraction and Breaking,” Coastal Eng. In Japan, Vol. 29, pp.19-39 (1986).
    56. Wu, J., “Wind-stress Coefficients over Sea Surface from Breeze to Hurricane,” Journal of Geophysical Research, Vol. 87, No. C12, pp. 9704-9706 (1982).
    57. 林朝福,簡榮生,「波譜分割在淺海波譜變形之應用」,第十三屆海洋工程研討會論文集,台北,pp. 85-103 (1991)。
    58. 許朝敏,「不規則波與流共存時緩坡波動方程式之探討」,國立台灣大學造船及海洋工程學研究所論文 (1993)。
    59. 歐文松,「小波轉換於分析淺化波浪特性之應用」,國立成功大學水利及海洋工程研究所論文 (1995)。
    60. 廖哲民,「應用能譜觀念由緩坡方程式求解斜坡上波場變形之計算方法」,國立成功大學水利及海洋工程研究所論文 (1996)。
    61. 廖建明,「波浪通過潛堤後之特性研究」,國立成功大學水利及海洋工程研究所論文 (1996)。
    62. 鄧秋霞,「以緩坡方程式模擬不規則波之變形」,國立成功大學水利及海洋工程研究所論文 (2002)。

    下載圖示 校內:2004-07-16公開
    校外:2004-07-16公開
    QR CODE