| 研究生: |
陳愉媜 Chen, Yu-Chen |
|---|---|
| 論文名稱: |
藉由化學預鋰化及表面碳披覆提升SiOx負極於鋰離子電池電化學特性之研究 Study on Enhancing Electrochemical Performance of SiOx Anodes in Lithium-ion Batteries by Chemical Pre-lithiation and Surface Carbon Coating |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | SiOx負極粉材 、導電碳披覆 、化學預鋰化 、鋰離子電池 |
| 外文關鍵詞: | SiOx anode powder, conductive carbon coating, chemical pre-lithiation, lithium-ion battery |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電動車與再生能源的發展,具有高能量密度的鋰離子電池備受矚目。在鋰離子電池負極材料中,考慮到矽負極巨大的體積膨脹率(~300 %),因此目前學者轉向研究同樣具有高比電容量且電池循環穩定性較佳的矽氧基(SiOx)負極材料。
SiOx在首次電化學鋰化過程中,奈米矽會進行合金反應貢獻電容值;而矽氧基材料則進行轉換反應,形成新的矽以及Li2O和不同矽酸鋰相,以當作奈米矽體積膨脹的緩衝層,提升電池循環穩定性,但其大多為不可逆相並會消耗鋰離子,產生首圈庫倫效率(Initial Coulombic Efficiency, ICE)低的問題。除此之外,SiOx還具有本質導電性較差以及體積膨脹率大(100~200 %)的問題。
為了解決上述問題,本研究將SiOx負極粉材進行導電碳披覆,再以粉材形式進行化學預鋰化以及鍛燒過程。藉由預鋰化參數調控,了解能有效提升SiOx粉材電化學性能的最佳矽酸鋰相組成。在後續對SiOx、SiOx@C以及Pre-SiOx@C粉材分析中,可以發現在預鋰化後碳披覆結構發生改變,且其導電性和導離性與SiOx相比皆提升,同時ICE以及循環穩定性為三者最佳,代表該改質粉末將有利於未來發展高能量密度的鋰離子電池。
As electric vehicles and renewable energy advance, silicon oxide-based (SiOx) materials are gaining attention for lithium-ion batteries due to their high specific capacity and improved cycle stability compared to silicon anode material. During SiOx lithiation, nano-sized silicon undergoes alloy reactions, contributing to capacity, while SiOx undergoes conversion reactions, forming new silicon, Li2O, and various lithium silicate phases. These phases act as a buffer layer, mitigating volume expansion and enhancing cycle stability. However, these reactions are mostly irreversible, resulting in low initial coulombic efficiency. Also, SiOx faces challenges related to poor intrinsic conductivity and high volume expansion rate. To overcome these issues, this study employs conductive carbon coating on SiOx powder, followed by chemical pre-lithiation and calcination process. The modified SiOx powder (Pre-SiOx@C) exhibits improved conductivity, ionic conductivity, initial coulombic efficiency, and cycle stability compared to SiOx, showing promise for the development of high-energy-density lithium-ion batteries.
1. DENNIS CANT, V.P. The Future Is Batteries. Eventually. 2021; Available from: https://7communications.ca/article/the-future-is-batterieseventually-.
2. kapkar, o. Week 1 Understanding Different Battery Chemistry. 2021; Available from: https://skill-lync.com/student-projects/week-1-understanding-different-battery-chemistry-272.
3. Walker, D. What Are Lithium Batteries Made Of ? 2022; Available from: https://batteryspecialists.com.au/blogs/news/lithium-batteries.
4. Kumar, H., S. Rajan, and A.K. Shukla, Development of Lithium-ion Batteries from Micro-Structured to Nanostructured Materials: Its Issues and Challenges. Science Progress, 2012. 95(3): p. 283-314.
5. Liu, C., Z.G. Neale, and G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today, 2016. 19(2): p. 109-123.
6. Mizushima, K., et al., LixCoO2 (0<xle1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
7. Martha, S.K., et al., A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds. Journal of Power Sources, 2009. 189(1): p. 248-255.
8. Aurbach, D., et al., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. Journal of Power Sources, 1999. 81-82: p. 472-479.
9. Shu, J., et al., Comparison of electronic property and structural stability of LiMn2O4 and LiNi0.5Mn1.5O4 as cathode materials for lithium-ion batteries. Computational Materials Science, 2010. 50(2): p. 776-779.
10. Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
11. Murdock, B.E., K.E. Toghill, and N. Tapia-Ruiz, A Perspective on the Sustainability of Cathode Materials used in Lithium-Ion Batteries. Advanced Energy Materials, 2021. 11(39): p. 2102028.
12. Lu, J., et al., High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews, 2018. 1(1): p. 35-53.
13. Deng, D., Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 2015. 3(5): p. 385-418.
14. Jin, L., et al., Pre-Lithiation Strategies for Next-Generation Practical Lithium-Ion Batteries. Advanced Science, 2021. 8(12): p. 2005031.
15. Lee, H., et al., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 2014. 7(12): p. 3857-3886.
16. Wang, A., et al., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials, 2018. 4(1): p. 15.
17. Zhang, C., et al., Challenges and Recent Progress on Silicon-Based Anode Materials for Next-Generation Lithium-Ion Batteries. Small Structures, 2021. 2(6): p. 2100009.
18. Jiang, M., et al., Assembly: A Key Enabler for the Construction of Superior Silicon-Based Anodes. Advanced Science, 2022. 9(30): p. 2203162.
19. Liu, Q., et al., The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review. Nano Research Energy, 2022. 1: p. e9120037.
20. Choi, I., et al., Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM. Electrochimica Acta, 2012. 85: p. 369-376.
21. Philipp, H.R., Optical properties of non-crystalline Si, SiO, SiOx and SiO2. Journal of Physics and Chemistry of Solids, 1971. 32(8): p. 1935-1945.
22. Philipp, H.R., Optical and bonding model for non-crystalline SiOx and SiOxNy materials. Journal of Non-Crystalline Solids, 1972. 8-10: p. 627-632.
23. Temkin, R.J., An analysis of the radial distribution function of SiOx. Journal of Non-Crystalline Solids, 1975. 17(2): p. 215-230.
24. Varanasi, V.G., et al., Role of Hydrogen and Nitrogen on the Surface Chemical Structure of Bioactive Amorphous Silicon Oxynitride Films. The Journal of Physical Chemistry B, 2017. 121(38): p. 8991-9005.
25. Hohl, A., et al., An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). Journal of Non-Crystalline Solids, 2003. 320(1): p. 255-280.
26. Schulmeister, K. and W. Mader, TEM investigation on the structure of amorphous silicon monoxide. Journal of Non-Crystalline Solids, 2003. 320(1): p. 143-150.
27. Hirata, A., et al., Atomic-scale disproportionation in amorphous silicon monoxide. Nature Communications, 2016. 7(1): p. 11591.
28. Park, C.-M., et al., Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. Journal of Materials Chemistry, 2010. 20(23): p. 4854-4860.
29. Liu, Z., et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chemical Society Reviews, 2019. 48(1): p. 285-309.
30. Pan, K., et al., Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-Ion batteries. Journal of Power Sources, 2019. 413: p. 20-28.
31. Meng, X., et al., Influences of oxygen content on the electrochemical performance of a-SiOx thin-film anodes. Electrochimica Acta, 2018. 283: p. 183-189.
32. Cho, J.H., et al., Influence of Oxygen Content on the Structural Evolution of SiOx Thin-Film Electrodes with Subsequent Lithiation/Delithiation Cycles. ACS Applied Energy Materials, 2022. 5(11): p. 13293-13306.
33. Haruta, M., T. Doi, and M. Inaba, Oxygen-Content Dependence of Cycle Performance and Morphology Changes in Amorphous-SiOx Thin-Film Negative Electrodes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2019. 166(2): p. A258.
34. Takezawa, H., et al., Structural stabilization on SiOx film anode with large areal capacity for enhanced cyclability in lithium-ion batteries. Journal of Power Sources, 2016. 324: p. 45-51.
35. Gao, B., et al., Alloy Formation in Nanostructured Silicon. Advanced Materials, 2001. 13(11): p. 816-819.
36. Li, W., X. Feng, and Y. Chen, High performance lithium battery anode materials by coating SiO2 nanowire arrays with PEO. New Journal of Chemistry, 2019. 43(36): p. 14609-14615.
37. Shi, C., et al. Controllable Preparation to Boost High Performance of Nanotubular SiO2@C as Anode Materials for Lithium-Ion Batteries. Batteries, 2023. 9(2), 107 DOI: 10.3390/batteries9020107.
38. Yu, B.-C., et al., A New Approach to Synthesis of Porous SiOx Anode for Li-ion Batteries via Chemical Etching of Si Crystallites. Electrochimica Acta, 2014. 117: p. 426-430.
39. Xiao, Z., et al., Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material. Carbon, 2019. 149: p. 462-470.
40. Miyachi, M., H. Yamamoto, and H. Kawai, Electrochemical Properties and Chemical Structures of Metal-Doped SiO Anodes for Li-Ion Rechargeable Batteries. Journal of The Electrochemical Society, 2007. 154(4): p. A376.
41. Zhou, N., et al., Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2 (B). Applied Surface Science, 2019. 486: p. 292-302.
42. Nguyen, C.C., H. Choi, and S.-W. Song, Roles of Oxygen and Interfacial Stabilization in Enhancing the Cycling Ability of Silicon Oxide Anodes for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 2013. 160(6): p. A906.
43. Yu, B.-C., et al., Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries. Journal of Materials Chemistry A, 2013. 1(15): p. 4820-4825.
44. Sivonxay, E., M. Aykol, and K.A. Persson, The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles. Electrochimica Acta, 2020. 331: p. 135344.
45. Jain, A., et al., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 2013. 1(1): p. 011002.
46. Gu, J., et al., Synthesis of nanosilicon@nonstoichiometric silicon oxide from bulk silicon dioxide and its lithium storage properties. Journal of Alloys and Compounds, 2016. 662: p. 185-192.
47. Chang, W.-S., et al., Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy & Environmental Science, 2012. 5(5): p. 6895-6899.
48. Yang, S., et al., Synthesis of graphene supported Li2SiO3 as a high performance anode material for lithium-ion batteries. Applied Surface Science, 2018. 444: p. 522-529.
49. Yan, D., et al., Phase relations of Li2O–FeO–SiO2 ternary system and electrochemical properties of LixSiyOz compounds. Journal of Materials Science, 2016. 51(13): p. 6452-6463.
50. Li, M., et al., SiO2/Cu/polyacrylonitrile-C composite as anode material in lithium ion batteries. Journal of Power Sources, 2013. 240: p. 659-666.
51. Wang, J., et al., Nano-sized SiOx/C composite anode for lithium ion batteries. Journal of Power Sources, 2011. 196(10): p. 4811-4815.
52. Li, M., et al., Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres. Journal of Power Sources, 2015. 288: p. 53-61.
53. Reynier, Y., et al., Practical implementation of Li doped SiO in high energy density 21700 cell. Journal of Power Sources, 2020. 450: p. 227699.
54. Koroleva, O.N., M.V. Shtenberg, and P.V. Khvorov, Vibrational spectroscopic and X-ray diffraction study of crystalline phases in the Li2O-SiO2 system. Russian Journal of Inorganic Chemistry, 2014. 59(3): p. 255-258.
55. Jung, S.C., et al., Atomic-Level Understanding toward a High-Capacity and High-Power Silicon Oxide (SiO) Material. The Journal of Physical Chemistry C, 2016. 120(2): p. 886-892.
56. Han, S.-D., et al., Intrinsic Properties of Individual Inorganic Silicon–Electrolyte Interphase Constituents. ACS Applied Materials & Interfaces, 2019. 11(50): p. 46993-47002.
57. Huang, Z., et al., Progress and challenges of prelithiation technology for lithium-ion battery. Carbon Energy, 2022. 4(6): p. 1107-1132.
58. Zhan, R., et al., Promises and Challenges of the Practical Implementation of Prelithiation in Lithium-Ion Batteries. Advanced Energy Materials, 2021. 11(35): p. 2101565.
59. Shellikeri, A., et al., Investigation of Pre-lithiation in Graphite and Hard-Carbon Anodes Using Different Lithium Source Structures. Journal of The Electrochemical Society, 2017. 164(14): p. A3914.
60. Palanisamy, M., M.H. Parekh, and V.G. Pol, In Situ Replenishment of Formation Cycle Lithium-Ion Loss for Enhancing Battery Life. Advanced Functional Materials, 2020. 30(46): p. 2003668.
61. Kim, H.J., et al., Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. Nano Letters, 2016. 16(1): p. 282-288.
62. Xu, H., et al., Sn-Alloy Foil Electrode with Mechanical Prelithiation: Full-Cell Performance up to 200 Cycles. Advanced Energy Materials, 2019. 9(42): p. 1902150.
63. Wang, G., et al., Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019. 11(9): p. 8699-8703.
64. Forney, M.W., et al., Prelithiation of Silicon–Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP). Nano Letters, 2013. 13(9): p. 4158-4163.
65. Zhao, J., et al., Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proceedings of the National Academy of Sciences, 2016. 113(27): p. 7408-7413.
66. Zhao, J., et al., A general prelithiation approach for group IV elements and corresponding oxides. Energy Storage Materials, 2018. 10: p. 275-281.
67. Yan, M.-Y., et al., Enabling SiOx/C Anode with High Initial Coulombic Efficiency through a Chemical Pre-Lithiation Strategy for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020. 12(24): p. 27202-27209.
68. Yue, H., et al., Understanding of the Mechanism Enables Controllable Chemical Prelithiation of Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021. 13(45): p. 53996-54004.
69. Tabuchi, T., H. Yasuda, and M. Yamachi, Li-doping process for LixSiO-negative active material synthesized by chemical method for lithium-ion cells. Journal of Power Sources, 2005. 146(1): p. 507-509.
70. Jang, J., et al., Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes. Angewandte Chemie International Edition, 2020. 59(34): p. 14473-14480.
71. Choi, J., et al., Weakly Solvating Solution Enables Chemical Prelithiation of Graphite–SiOx Anodes for High-Energy Li-Ion Batteries. Journal of the American Chemical Society, 2021. 143(24): p. 9169-9176.
72. Shen, Y., et al., Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Li-Ion Batteries by Chemical Prelithiation of Graphite Anode. Advanced Functional Materials, 2021. 31(24): p. 2101181.
73. Zhang, X., et al., An electrode-level prelithiation of SiO anodes with organolithium compounds for lithium-ion batteries. Journal of Power Sources, 2020. 478: p. 229067.
74. Li, Y., et al., Revealing the interface-rectifying functions of a Li-cyanonaphthalene prelithiation system for SiO electrode. Science Bulletin, 2022. 67(6): p. 636-645.
75. He, W., et al., Regulating the Solvation Structure of Li+ Enables Chemical Prelithiation of Silicon-Based Anodes Toward High-Energy Lithium-Ion Batteries. Nano-Micro Letters, 2023. 15(1): p. 107.
76. MTI Corporation. Available from: https://www.mtixtl.com/cvdfurnacesystem.aspx.
77. 國立成功大學核心設施中心. Available from: https://ctrmost-cfc.ncku.edu.tw/p/412-1210-2360.php?Lang=zh-tw.
78. 國立成功大學HiGEM跨維綠能中心. Available from: http://higem.ncku.edu.tw/index.php?temp=laboratory&lang=cht.
79. 武漢市藍電電子股份有限公司. Available from: http://www.whland.com/.
80. Metrohm. Available from: https://www.metrohm.com/zh_tw/products/electrochemistry/modular-line.html.
81. Chung, D.J., et al., Dehydrogenation-driven Li metal-free prelithiation for high initial efficiency SiO-based lithium storage materials. Nano Energy, 2021. 89: p. 106378.
82. Cruz, D., et al., Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3). Journal of Solid State Chemistry, 2006. 179(3): p. 909-916.
83. Li, D., et al., A porous lithium silicate ceramic separator prepared from diatomite: Effect of LiOH on pore structure, composition and electrochemical properties of the separator. Journal of Power Sources, 2021. 482: p. 228945.
84. Doh, C.-H., et al., Analysis on the Formation of Li4SiO4 and Li2SiO3 through First Principle Calculations and Comparing with Experimental Data Related to Lithium Battery. J. Electrochem. Sci. Technol, 2011. 2(3): p. 146-151.
85. Wang, F., K. Li, and C. Ning, Sintering properties of sol–gel derived lithium disilicate glass ceramics. Journal of Sol-Gel Science and Technology, 2018. 87(2): p. 372-379.
86. Jeong, W.J., et al., Double-buffer-phase embedded Si/TiSi2/Li2SiO3 nanocomposite lithium storage materials by phase-selective reaction of SiO with metal hydrides. Energy Storage Materials, 2022. 50: p. 740-750.
87. Weng, S., et al., Localized-domains staging structure and evolution in lithiated graphite. Carbon Energy, 2023. 5(1): p. e224.
88. Chen, X., X. Wang, and D. Fang, A review on C1s XPS-spectra for some kinds of carbon materials. Fullerenes, Nanotubes and Carbon Nanostructures, 2020. 28(12): p. 1048-1058.
89. Jaumann, T., et al., SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders. Physical Chemistry Chemical Physics, 2015. 17(38): p. 24956-24967.
90. Li, Z., et al., Watermelon-Like Structured SiOx–TiO2@C Nanocomposite as a High-Performance Lithium-Ion Battery Anode. Advanced Functional Materials, 2018. 28(31): p. 1605711.
91. Bousiakou, L. and S. Karapetis, Determination of Au Film Thiolation and Silane Bonding Onto SiO2 Films Within the Frame of Biosensor Surface Functionalization – an Analysis of Best Practices and Techniques. Croatica Chemica Acta, 2020. 93.
92. Cabello, M., et al. Towards a High-Power Si@graphite Anode for Lithium Ion Batteries through a Wet Ball Milling Process. Molecules, 2020. 25(11), 2494 DOI: 10.3390/molecules25112494.
93. Zheng, G., et al., Controlling Surface Oxides in Si/C Nanocomposite Anodes for High-Performance Li-Ion Batteries. Advanced Energy Materials, 2018. 8(29): p. 1801718.
94. Lukose, R., et al., Influence of plasma treatment on SiO2/Si and Si3N4/Si substrates for large-scale transfer of graphene. Scientific Reports, 2021. 11(1): p. 13111.
95. Strauß, F., et al., Li–Si thin films for battery applications produced by ion-beam co-sputtering. RSC Advances, 2015. 5(10): p. 7192-7195.
96. Yan, H., et al., Scalable in situ condensation fabrication of amorphous SiOx@C microbeads derived from organic silane coupling agents for lithium-ion storage. Ionics, 2020. 26(2): p. 649-660.
97. Yoo, S., J. Kim, and B. Kang, Characterizing local structure of SiOx using confocal μ-Raman spectroscopy and its effects on electrochemical property. Electrochimica Acta, 2016. 212: p. 68-75.
98. Li, Y., et al., A 3D pore-nest structured silicon–carbon composite as an anode material for high performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2017. 4(12): p. 1996-2004.
99. Gu, M., et al., Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges. Nano Energy, 2015. 17: p. 366-383.
100. Pan, Y., G. Wang, and B.L. Lucht, Cycling performance and surface analysis of Lithium bis(trifluoromethanesulfonyl)imide in propylene carbonate with graphite. Electrochimica Acta, 2016. 217: p. 269-273.
101. Wu, X., et al., Carbon-coated isotropic natural graphite spheres as anode material for lithium-ion batteries. Ceramics International, 2017. 43(12): p. 9458-9464.
102. Niu, J., et al., Direct amination of Si nanoparticles for the preparation of Si@ultrathin SiOx@graphene nanosheets as high performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2015. 3(39): p. 19892-19900.
103. Liu, B., et al. Monodisperse MoS2/Graphite Composite Anode Materials for Advanced Lithium Ion Batteries. Molecules, 2023. 28(6), 2775 DOI: 10.3390/molecules28062775.
104. Heubner, C., et al., Understanding Component-Specific Contributions and Internal Dynamics in Silicon/Graphite Blended Electrodes for High-Energy Lithium-Ion Batteries. Batteries & Supercaps, 2022. 5(1): p. e202100182.
105. Kirner, J., et al., Optimization of Graphite–SiO blend electrodes for lithium-ion batteries: Stable cycling enabled by single-walled carbon nanotube conductive additive. Journal of Power Sources, 2020. 450: p. 227711.
106. Hamzelui, N., G.G. Eshetu, and E. Figgemeier, Customizing Active Materials and Polymeric Binders: Stern Requirements to Realize Silicon-Graphite Anode Based Lithium-Ion Batteries. Journal of Energy Storage, 2021. 35: p. 102098.
107. Kitada, K., et al., Unraveling the Reaction Mechanisms of SiO Anodes for Li-Ion Batteries by Combining in Situ 7Li and ex Situ 7Li/29Si Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2019. 141(17): p. 7014-7027.
108. Woo, J. and S.-H. Baek, A comparative investigation of different chemical treatments on SiO anode materials for lithium-ion batteries: towards long-term stability. RSC Advances, 2017. 7(8): p. 4501-4509.
109. Lee, J.K., W.Y. Yoon, and B.K. Kim, Kinetics of Reaction Products of Silicon Monoxide with Controlled Amount of Li-Ion Insertion at Various Current Densities for Li-Ion Batteries. Journal of The Electrochemical Society, 2014. 161(6): p. A927.
110. Xiao, H., et al., Investigation of SiOx anode fading mechanism with limited capacity cycling. APL Materials, 2022. 10(1): p. 011108.
111. Li, X., et al., Degradation mechanisms of high capacity 18650 cells containing Si-graphite anode and nickel-rich NMC cathode. Electrochimica Acta, 2019. 297: p. 1109-1120.
校內:2029-03-01公開