簡易檢索 / 詳目顯示

研究生: 沈宇成
Shen, Yu-cheng
論文名稱: 聚矽氧烷交聯之聚乙烯咪唑/全氟磺酸高分子質子傳導膜
Polysiloxane Cross-linked Poly(vinylimidazole)/Perfluorosulfonated Composite Membranes
指導教授: 郭炳林
Kuo, Ping-lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 58
中文關鍵詞: 交聯聚矽氧烷質子傳導度甲醇穿透度氧化
外文關鍵詞: oxidation, polysiloxane, proton conductivity, cross-linking, methanol permeability, membranes
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以由巰丙基三甲氧基矽烷(MPS)和聚乙烯咪唑組成之聚矽氧烷交聯網狀結構物與Nafion混掺,製備低甲醇穿透度之質子傳導膜。其中Nafion與此交聯結構之結合乃是透過Nafion結構中的磺酸根以及聚矽氧烷旁的咪唑之間的離子作用力。於ATR/FTIR的分析結果中,磺酸根之對稱吸收鋒於1057.8 cm-1處的位移顯示了此作用力的存在。聚矽氧烷網狀結構的導入提高了質子傳導膜之結合水率(bound water degree)以及於70 C以上之溫度環境下的質子傳導度,並且可有效降低其甲醇穿透度至10-7 cm2 s-1。例如於30 C下,相較於Nafion-117其2.6 × 10-2 S cm-1的質子傳導度和2.2 × 10-6 cm2 s-1的甲醇穿透度,M(VI)6a膜擁有較好之2.8 × 10-2 S cm-1的傳導度以及較低之3.1 × 10-7 cm2 s-1的甲醇穿透度。
    本研究的另一部份為選取上述某部份的膜作進一步的實驗與探討。上述已製備之膜透過浸泡於10wt%的雙氧水水溶液,將聚矽氧烷交聯網狀結構中之巰基氧化成磺酸根。經過此處理後之膜擁有比處理前較高之含水率、離子交換力(IEC)和質子傳導度。即使含水率的提高伴隨著甲醇穿透度的增加,其值仍然可低於Nafion-117。例如s-M(VI)6a膜,於30 C時,其質子傳導度為6.4 × 10-2 S cm-1,甲醇穿透度為6.3 × 10-7 cm2 s-1。

    Proton exchange membranes with low methanol permeability are constructed by incorporating Nafion into a covalently cross-linked network composed of 3-mercaptopropyltrimethoxysilane (MPS) and poly(1-vinylimidazole) with a trimethoxysilyl terminal group M(VI)n by ionic cross-linking. The robust framework is full of covalently bonded polysiloxane. The association of Nafion with the cross-linked polysiloxane network results from the ionic interaction between the sulfonic acid groups on Nafion and the imidazole groups next to polysiloxane. Evidence of the interaction is the shift of the -SO3 stretching band at 1057.8 cm-1 in ATR/FTIR. The polysiloxane network contributed to the increase in bound water degree, higher proton conductivity at temperatures higher than 70 C, and greatly decreased methanol permeability. The increasing polysiloxane concentration reduces the methanol permeability to 10-7 cm2 s-1. For example, M(VI)6a, at 30 C, the composite membrane showed both good proton conductivity (i.e., σ = 2.8 × 10-2 S cm-1) and ultralow methanol permeability (i.e., P = 3.1 × 10-7 cm2 s-1). The composite performed better than Nafion-117 (σ = 2.6 × 10-2 S cm-1 and P = 2.2 × 10-6 cm2 s-1) under the same conditions.
    Some of above samples were chosen for further work. Membranes s-M(VI)n are prepared by immersing M(VI)n in 10wt% H2O2 solution which oxidized the thiol group(-SH) into sulfonic acid group(-SO3H). The composite membranes have higher water content, IEC value, and proton conductivity than those before oxidation. Although the increase of water content also results in increasing methanol permeability, it is lower than Nafion-117. For example, s-M(VI)6a, at 30 C, the composite membrane showed both higher proton conductivity (i.e., σ = 6.4 × 10-2 S cm-1) and methanol permeability (i.e., P = 6.3 × 10-7 cm2 s-1).

    ABSTRACT...................................................I 摘要.....................................................III 誌謝......................................................IV CONTENTS...................................................V LIST OF TABLES..........................................VIII LIST OF SCHEMES...........................................IX LIST OF FIGURES............................................X CHAPTER 1. INTRODUCTION....................................1 1.1 The Reasons behind Fuel Cell Development............1 1.2 Types of Fuel Cells.................................1 1.3 Polymer Exchange Membrane Fuel Cells................3 1.4 Proton Exchange Membranes...........................5 1.5 Composite Proton Exchange Membranes.................8 1.6 Research Motives...................................10 CHAPTER 2. THEOREMS.......................................12 2.1 Basic Concept of Proton Exchange Membrane Fuel Cells.....................................................12 2.2 Direct Methanol Fuel Cells.........................14 2.3 Transport properties of PEM........................15 2.4 Alternating current impedance spectroscopy.........16 2.4.1 Introduction of fundamental electrical circuits..................................................16 2.4.2 Analysis of AC impedance......................19 CHAPTER 3. EXPERIMENTAL SECTION...........................23 3.1 Materials.............................................23 3.2 Sample preparation....................................23 3.2.1 Synthesis of siloxane-terminated poly(vinylimidazole), M(VI)n..................................23 3.2.2 Preparation of M(VI)n Membranes..................23 3.2.3 Preparation of s-M(VI)n Membranes................24 3.3 Characterizations.....................................24 3.3.1 ATR-FTIR spectroscopy............................24 3.3.2 DSC Analysis.....................................24 3.3.3 Proton Conductivity Measurements.................24 3.3.4 Solid-state NMR..................................25 3.3.5 Ion-Exchange Capacity (IEC)......................25 3.3.6 X-ray Photoelectron Spectroscopy.................25 3.3.7 Methanol Permeability............................26 3.3.8 Oxidative stability..............................26 3.3.9 Preparation of Membrane Electrode Assembly (MEA).26 CHAPTER 4. RESULTS AND DISCUSSION.........................28 4.1 Poly(vinylimidazole)-Functionalized Polysiloxane / Nafion Composite Membranes................................28 4.1.1 Preparation of Polyvinylimidazole-Functionalized Polysiloxane-Nafion Membranes..............28 4.1.2 Interaction between Nafion and M(VI)n.........32 4.1.3 Water Uptake..................................37 4.1.4 State of Water................................38 4.1.5 Proton Conductivity Measurements..............40 4.1.6 Methanol Permeability.........................43 4.1.7 Oxidation Stability...........................44 4.1.8 Single DMFC Performance.......................45 4.2 Sulfonated Poly(vinylimidazole)-Functionalized Polysiloxane / Nafion Composite Membranes.................46 4.2.1 Preparation of Oxidized Membranes, s-M(VI)n...46 4.2.2 Water Uptake..................................46 4.2.3 State of Water................................47 4.2.4 Proton Conductivity Measurements..............49 4.2.5 Methanol Permeability.........................50 4.2.6 Single DMFC Performance.......................51 CHAPTER 5. CONCLUSIONS....................................52 REFERENCES................................................54

    1. Rikukawa, M.; Sanui, K. Prog. Polym. Sci. 2000, 25, 1463.
    2. Hsu, W. Y.; Gierke, T. D. J. Membr. Sci. 1983, 13, 307.
    3. Jannasch, P. Current Opinion in Colloid and Interface Science 2003, 8, 96.
    4. Doyle, M.; Rajendran, G. In Handbook of Fuel cells-Fundamentals, Technology and Applications, Vielstich, W; Gasteiger, H. A.; Lamm, A., Eds.; Wiley: West Sussex, 2003, vol. 3, Chapter 30, p 351.
    5. Li, Q. F.; He, R. H.; Jensen, J. O.; Bjerrum, N. J. Chem. Mater. 2003, 15, 4896.
    6. Senadeera, G. K. R.; Careem, M. A.; Skaarup, S.; West, K. Solid State Ionics 1996, 85, 37.
    7. James, L.; Andrew, D. Fuel Cell Explained, John Weiley, England, 2003.
    8. Yang, Z. Y.; Rajendran, R.G. Angew. Chem. Int. Ed. 2005, 44, 564.
    9. Kauranen, P. S.; Skou, E. J. Appl. Electrochem. 1996, 26, 909.
    10. Narayanan, S. R.; Kindler, A.; Jeffries-Nakamura, B.; Chun, W.; Frank, H.l Smart, M.; Valdez, T. I.; Surampudi, S.; Halpert, G. Annu. Battery Cnf. Appl. Adv. 1996, 11, 113.
    11. Ding, J.; Chuy, C.; Holdcroft, S. Adv. Funct. Mater. 2002, 12, 389.
    12. Lafitte, B.; Karlsson, L. E.; Jannasch, P. Macromol. Rapid Commun. 2002, 23, 896.
    13. Yamaguchi, T.; Miyata, F.; Nakao, S.-i. Adv. Mater. 2003, 15, 1198.
    14. Souzy, R.; Ameduri, B.; Boutevin, B.; Capron, P.; Marsacq, D.; Gebel, G. Fuel Cells 2005, 5, 383.
    15. Yang, Z. Y.; Rajendran, R. G. Angew. Chem. Int. Ed. 2005, 44, 564.
    16. Gubler, L.; Gürsel, S. A.; Scherer, G. G. Fuel Cells 2005, 5, 317.
    17. Bauer, B.; Jones, D. J.; Roziere, J.; Tchicaya, L.; Alberti, G.; Casciola, M.; Massinelli, I.; Peraio, A.; Besse, S.; Ramunni, E. J. New Materials for Electrochemical Systems 2000, 3, 93.
    18. Peled, E.; Duvdevani, T.; Aharon, A.; Melman, A. Electrochem. Solid-State Lett. 2000, 3, 525.
    19. Hietala, S.; Koel, M.; Skou, E.; Elomaa, M.; Sundholm, F. J. Mater. Chem. 1998, 8, 1127.
    20. Aricò, A. S.; Antonucci, P. L.; Giordano N.; Antonucci, V. Material Letters 1995, 24, 399.
    21. Fu, Y. Z.; Manthiram, A. J. Power Source 2006, 157, 222.
    22. Wang, F.; Hickner, M.; Kim, Y. S.; Zawodzinski, T. A.; McGrath, J. E. J. Membr. Sci. 2002, 197, 231.
    23. Staiti, P.; Lufrano, F.; Arico, A. S.; Passalacqua, E.; Antonucci, V. J. Membr. Sci. 2001, 188, 71.
    24. Farhat, T. R.; Hammond, P. T. Adv. Funct. Mater. 2005, 15, 945.
    25. Deng, W. Q.; Molinero, V.; Goddard, W. A. III J. Am. Chem. Soc. 2004, 126, 15644.
    26. Manea, C.; Mulder, M. J. Membr. Sci. 2002, 206, 443.
    27. Park, J. S.; Park, J. W.; Ruckenstein, E. Polymer 2001, 42, 4271.
    28. Depre, L.; Ingram, M.; Poinsignon, C.; Popall, M. Electrochim. Acta 2000, 45, 1377.
    29. Kerres, J. A. J. Membr. Sci. 2001, 185, 3.
    30. Mikhailenko, S. D.; Wang, K.; Kaliaguine, S.; Xing, P.; Robertson, G. P.; Guiver, M. D. J. Membr. Sci. 2004, 233, 93.
    31. Kerres, J. A. Fuel Cells 2005, 5, 230.
    32. Deimede, V.; Voyiatzis, G. A.; Kallitsis, J. K.; Qingfeng, L.; Bjerrum, N. J. Macromolecules 2000, 33, 7609.
    33. Tan, S.; Belanger, D. J. Phys. Chem B 2005, 109, 23480.
    34. Yin, Y.; Hayashi, S.; Yamada, O.; Kita, H.; Okamoto, K. I. Macromolecular Rapid Communications 2005, 26, 696.
    35. Lee, C. H.; Park, H. B.; Chung, Y. S.; Lee, Y. M.; Freeman, B. D. Macromolecules 2006, 39, 755.
    36. Kerres, J.; Zhang, W.; Cui, W. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1441.
    37. Qingfeng, L.; Ronghuan, H.; Jens, O. J.; Niels, J. B. Chem. Mater. 2003, 15, 4896.
    38. Nakajima, H.; Honma, I. Solid State Ionics 2002, 148, 607.
    39. Staiti, P., Minutoli, M., J. Power Sources 2001, 94, 9.
    40. Amarilla, J. M.; Rojas, R. M.; Rojo, J. M.; Cubillo, M. J.; Linares, A.; Acosta, J. L. Solid State Ionics 2000, 127, 133.
    41. Genova-Dimitrova, P., Baradie, B., Foscallo, D., Poinsignon, C., Sanchez, J. Y., J. Membr. Sci. 2001, 185, 59.
    42. Nunes, S. P.; Ruffmann, B.; Rikowski, E.; Vetter, S.; Richau, K. J. Membr. Sci. 2002, 203, 215.
    43. Halla, J. D.; Mamak, M.; Williams, D. E.; Ozin, G. A. Adv. Funct. Mater. 2003, 13, 133.
    44. Bronstein, L. M.; Joo, C.; Karlinsey, R., Ryder, A.; Zwanziger, J. W. Chem. Mater. 2001, 13, 3678.
    45. Liang, W. J.; Kuo, P. L. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 151.
    46. Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1, 5.
    47. Zawodzinski, T. A.; Neeman, M.; Sillerud, L. O.; Gottesfed, S. J. Phys. Chem. 1991, 95, 6040.
    48. Zawodzinski, T. A.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; Gottesfeld, S. J. Electrochem Soc. 1993, 140, 1041.
    49. Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S. Mater. Chem. Phys. 2002, 74, 98.
    50. Gray, F. M. Solid Polymer Electrolytes: Fundamentals and Technological Application, VCH, New York, 1991.
    51. Linford, R. G. Electrochemical Science and Technology of Polymers-2, 1990.
    52. Nakamura, K.; Hatakeyama, T.; Hatakeyama, H. Polymer 1983, 24, 871.
    53. Makoto, T.; Shunichi, I.; Hirotaka, I.; Zhenghe, X. Chem. Mater. 2004, 16, 1977.
    54. Yen, C. Y.; Lee, C. H.; Lin, Y. F.; Lin, H. L.; Hsiao, Y. H.; Liao, S. H.; Chuang, C. Y.; Ma, C. C. M. J. Power Sources 2007, 173, 36.
    55. Karlsson, L. E.; Wessle’n, B.; Jannasch, P. Electrochim. Acta 2002, 47, 3269.
    56. Asano, N.; Aoki, M.; Suzuki, S.; Miyatake, K.; Uchida, H.; Watanabe, M. J. Am. Chem. Soc. 2006, 128, 1762.
    57. Lowry, S. R.; Mauritz, K. A. J. Am. Chem. Soc. 1980, 102, 4665.
    58. Lage, L. G.; Delgado, P. G.; Kawano, Y. Eur. Polym. J. 2004, 40, 1309.
    59. Park, H. S.; Kim, Y. J.; Hong, W. H.; Choi, Y. S.; Lee, H. K. Macromolecules 2005, 38, 2289.
    60. Tannenbaum, R.; Rajagopalan, M.; Eisenberg, A. J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 1814.

    下載圖示 校內:2011-07-28公開
    校外:2011-07-28公開
    QR CODE