| 研究生: |
鄭惠嬪 Cheng, Hui-Pin |
|---|---|
| 論文名稱: |
以擴散驅動的奈米免疫感測器快速檢測細胞與細菌中微量蛋白 Diffusion-driven nano-immunosensors for rapid detection of trace cellular and bacterial proteins |
| 指導教授: |
莊漢聲
Chuang, Han-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 生物感測器 、奈米免疫感測器 、生物標記 、多重檢測 、毒素 、蛋白質 、免疫測定 、擴散率 、金奈米顆粒 、奈米顆粒 、癌症 、多種基質 、細胞 、細菌 |
| 外文關鍵詞: | biosensor, nano-immunosensor, biomarkers, multiplex detection, toxin, protein, Immunoassay, diffusivity, AuNPs, Nanoparticles, cancer, multiple matrices, cells, bacteria |
| 相關次數: | 點閱:88 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微量蛋白的快速檢測在食品安全、臨床生物標記監測、量化細胞內蛋白質表現和檢測微量細菌毒素的相關領域中至關重要。當前臨床應用上,對快速、靈敏的生物標記物的檢測需求不斷增加,特別是對於早期疾病診斷、治療反應的即時監測和個人化醫療領域,更是備受關注,而在細菌毒素相關領域中,肉毒桿菌是引起神經麻痺疾病的最致命的細菌毒素之一,其非常微量就能致命,由上述內容可知,當前對有毒蛋白質和其他臨床相關生物標記物的檢測工具的迫切需求。為了滿足這些需求,我們提出了一種基於珠子的奈米免疫感測器,此感測器是基於擴散技術進行檢測,可快速、直接且精確地檢測生物毒素、臨床生物標記和其他感興趣的蛋白質。
我們設計的奈米免疫感測器是透過在螢光探針顆粒上連接包含金奈米顆粒 (AuNP)、目標蛋白和抗體的夾層免疫複合物。核心原理是,隨著更多的目標蛋白與其結合,整體免疫複合物顆粒的擴散率會隨之降低,這個研究在許多複雜基質(例如牛奶和牛血清)中建立了純化肉毒桿菌毒素(0.01–500 ng/mL)的校準曲線,表明此奈米免疫感測器的測量可有效的避免背景雜訊干擾。
除了檢測完整的毒素外,奈米免疫感測器還可以透過用突觸體相關蛋白 25 (SNAP-25) 等不同蛋白包被探針顆粒來評估毒素活性。當活性肉毒桿菌毒素剪切 SNAP-25 後,AuNP-抗體綴合物與其結合,導致擴散度降低,由此可應用於檢測毒素活性。值得注意的是,這種基於擴散的方法在 2 分鐘時間內實現了低至10 pg/mL的檢測極限。
此奈米免疫感測器具有快速、靈敏和不依賴基質的特性,可以方便地進行現場篩檢,以保護食品供應、保持與驗證醫療器械和化妝品的安全性以及檢測其他重要的臨床生物標記。這種創新的奈米免疫感測平台在快速識別複雜環境和臨床樣本中微量蛋白的檢測需求方面;具有廣闊的應用前景。
Rapidly detecting trace amounts of proteins is essential for ensuring food safety, monitoring clinical biomarkers, quantifying intracellular protein expression, and detecting bacterial toxins. In clinical settings, the demand for rapid and sensitive biomarker detection is ever-increasing, particularly for early disease diagnosis, treatment monitoring, and personalized medicine. Clostridium botulinum, one of the deadliest bacterial toxins causing neuroparalytic disease, further highlights the urgent need for appropriate detection tools for toxic proteins and other clinically relevant biomolecules. In response to these demands, we present a bead-based nano-immunosensor that operates based on the diffusometric technique for the quick, straightforward, and precise detection of biological toxins, clinical biomarkers, and other proteins of interest.
This nano-immunosensor was developed by creating sandwiched immunocomplexes involving gold nanoparticles (AuNPs), target proteins, and antibodies on fluorescent probe particles. The core principle is that the diffusivity of particles decreases as more target proteins bind to them. Calibration curves were successfully generated for purified botulinum toxins (0.01–500 ng/mL) in complex matrices such as whole milk and bovine serum, indicating that the measurement is not affected by background interference.
In addition to detecting intact toxins, the nano-immunosensors can also assess toxin activity by coating the probe particles with a substrate protein like synaptosomal-associated protein 25 (SNAP-25). When active botulinum toxin cleaves SNAP-25, AuNP-antibody conjugates bind to it, causing a slight reduction in diffusivity to indicate toxicity. Notably, this diffusion-based method achieves detection limits as low as 10 pg/mL within a 2 min timeframe.
The rapid, sensitive, and matrix-independent characteristics of these nano-immunosensors allow for convenient onsite screening to protect food supplies, maintain hygiene in medical instruments, verify the safety of cosmetic products, and detect other crucial biomarkers. This innovative biosensing platform holds great promise in meeting the increasing societal demand for rapid identification of trace proteins in complex environmental and clinical samples.
[1] M. Gallo, L. Ferrara, A. Calogero, D. Montesano, D. Naviglio, Relationships between food and diseases: What to know to ensure food safety, Food Research International 137 (2020) 109414.
[2] K. Lebelo, N. Malebo, M.J. Mochane, M. Masinde, Chemical contamination pathways and the food safety implications along the various stages of food production: a review, International Journal of Environmental Research and Public Health 18(11) (2021) 5795.
[3] K. Nešić, K. Habschied, K. Mastanjević, Possibilities for the biological control of mycotoxins in food and feed, Toxins 13(3) (2021) 198.
[4] C.G. Awuchi, E.N. Ondari, C.U. Ogbonna, A.K. Upadhyay, K. Baran, C.O.R. Okpala, M. Korzeniowska, R.P. Guiné, Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—A revisit, Foods 10(6) (2021) 1279.
[5] M. Dong, G. Masuyer, P. Stenmark, Botulinum and tetanus neurotoxins, Annual Review of Biochemistry 88 (2019) 811-837.
[6] A. De Girolamo, V. Lippolis, M. Pascale, Overview of recent liquid chromatography mass spectrometry-based methods for natural toxins detection in food products, Toxins 14(5) (2022) 328.
[7] M. Castro-Puyana, M. Herrero, Metabolomics approaches based on mass spectrometry for food safety, quality and traceability, TrAC Trends in Analytical Chemistry 52 (2013) 74-87.
[8] A. Makler, W. Asghar, Exosomal biomarkers for cancer diagnosis and patient monitoring, Expert Review of Molecular Diagnostics 20(4) (2020) 387-400.
[9] G. Cutshaw, S. Uthaman, N. Hassan, S. Kothadiya, X. Wen, R. Bardhan, The emerging role of Raman spectroscopy as an omics approach for metabolic profiling and biomarker detection toward precision medicine, Chemical Reviews 123(13) (2023) 8297-8346.
[10] M. Ignatiadis, G.W. Sledge, S.S. Jeffrey, Liquid biopsy enters the clinic—implementation issues and future challenges, Nature Reviews Clinical Oncology 18(5) (2021) 297-312.
[11] N. Sarawagi, K. Vaid, J. Dhiman, T. Johns, V. Kumar, Nanomaterials-Based Immunosensors in Food Analysis, Nanosensing and Bioanalytical Technologies in Food Quality Control, Springer2022, pp. 259-318.
[12] M. Corsalini, F. Inchingolo, G. Dipalma, A.E. Wegierska, I.A. Charitos, M.A. Potenza, A. Scarano, F. Lorusso, A.D. Inchingolo, M. Montagnani, Botulinum neurotoxins (BoNTs) and their biological, pharmacological, and toxicological issues: A scoping review, Applied Sciences 11(19) (2021) 8849.
[13] M.S. Moritz, W.H. Tepp, M. Bradshaw, E.A. Johnson, S. Pellett, Isolation and characterization of the novel botulinum neurotoxin A subtype 6, Msphere 3(5) (2018) 10.1128/msphere. 00466-18.
[14] E. Janik, M. Ceremuga, J. Saluk-Bijak, M. Bijak, Biological toxins as the potential tools for bioterrorism, International Journal of Molecular Sciences 20(5) (2019) 1181.
[15] K.K. Hill, T.J. Smith, Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes, Botulinum Neurotoxins (2013) 1-20.
[16] E. Fonfria, M. Elliott, M. Beard, J.A. Chaddock, J. Krupp, Engineering botulinum toxins to improve and expand targeting and SNARE cleavage activity, Toxins 10(7) (2018) 278.
[17] S. Pantano, C. Montecucco, The blockade of the neurotransmitter release apparatus by botulinum neurotoxins, Cellular and Molecular Life Sciences 71 (2014) 793-811.
[18] D.A. Benefield, S.K. Dessain, N. Shine, M.D. Ohi, D.B. Lacy, Molecular assembly of botulinum neurotoxin progenitor complexes, Proceedings of the National Academy of Sciences 110(14) (2013) 5630-5635.
[19] V.V. Vaidyanathan, K.i. Yoshino, M. Jahnz, C. Dörries, S. Bade, S. Nauenburg, H. Niemann, T. Binz, Proteolysis of SNAP‐25 isoforms by botulinum neurotoxin types A, C, and E: domains and amino acid residues controlling the formation of enzyme‐substrate complexes and cleavage, Journal of Neurochemistry 72(1) (1999) 327-337.
[20] H. Yamamoto, T. Ida, H. Tsutsuki, M. Mori, T. Matsumoto, T. Kohda, M. Mukamoto, N. Goshima, S. Kozaki, H. Ihara, Specificity of botulinum protease for human VAMP family proteins, Microbiology and Immunology 56(4) (2012) 245-253.
[21] N. Thirunavukkarasu, E. Johnson, S. Pillai, D. Hodge, L. Stanker, T. Wentz, B. Singh, K. Venkateswaran, P. McNutt, M. Adler, Botulinum neurotoxin detection methods for public health response and surveillance, Frontiers in Bioengineering and Biotechnology 6 (2018) 80.
[22] M.B. Dorner, K.M. Schulz, S. Kull, B.G. Dorner, Complexity of botulinum neurotoxins: challenges for detection technology, Botulinum Neurotoxins (2013) 219-255.
[23] S. Bitz, The botulinum neurotoxin LD50 test–problems and solutions, ALTEX-Alternatives to Animal Experimentation 27(2) (2010) 114-116.
[24] J.D.D. Lamotte, S. Roqueviere, H. Gautier, E. Raban, C. Bouré, E. Fonfria, J. Krupp, C. Nicoleau, hiPSC-derived neurons provide a robust and physiologically relevant in vitro platform to test botulinum neurotoxins, Frontiers in Pharmacology 11 (2021) 617867.
[25] A. Singh, S. Datta, A. Sachdeva, S. Maslanka, J. Dykes, G. Skinner, D. Burr, R.C. Whiting, S.K. Sharma, Evaluation of an enzyme-linked immunosorbent assay (ELISA) kit for the detection of botulinum neurotoxins A, B, E, and F in selected food matrices, Health Security 13(1) (2015) 37-44.
[26] K. Patel, S. Halevi, P. Melman, J. Schwartz, S. Cai, B.R. Singh, A novel surface plasmon resonance biosensor for the rapid detection of botulinum neurotoxins, Biosensors 7(3) (2017) 32.
[27] O.G. Weingart, K. Eyer, C. Lüchtenborg, T. Sachsenheimer, B. Brügger, M. Van Oostrum, B. Wollscheid, P.S. Dittrich, M.J. Loessner, In vitro quantification of botulinum neurotoxin type A1 using immobilized nerve cell-mimicking nanoreactors in a microfluidic platform, Analyst 144(19) (2019) 5755-5765.
[28] C.Y. Lim, J.H. Granger, M.D. Porter, SERS detection of Clostridium botulinum neurotoxin serotypes A and B in buffer and serum: Towards the development of a biodefense test platform, Analytica Chimica Acta: X 1 (2019) 100002.
[29] C. Rasetti-Escargueil, M.R. Popoff, Recent Developments in Botulinum Neurotoxins Detection, Microorganisms 10(5) (2022) 1001.
[30] W.S. Hong, H.M. Pezzi, A.R. Schuster, S.M. Berry, K.E. Sung, D.J. Beebe, Development of a highly sensitive cell-based assay for detecting botulinum neurotoxin type A through neural culture media optimization, Journal of Biomolecular Screening 21(1) (2016) 65-73.
[31] S.J. Kwon, E.J. Jeong, Y.C. Yoo, C. Cai, G.-H. Yang, J.C. Lee, J.S. Dordick, R.J. Linhardt, K.B. Lee, High sensitivity detection of active botulinum neurotoxin by glyco-quantitative polymerase chain-reaction, Analytical Chemistry 86(5) (2014) 2279-2284.
[32] S.J. Kwon, E.J. Jeong, Y.C. Yoo, C. Cai, G.-H. Yang, J.C. Lee, J.S. Dordick, R.J. Linhardt, K.B. Lee, High Sensitivity Detection of Active Botulinum Neurotoxin (BoNT) by Glyco-qPCR, Rensselaer Polytechnic Institute, Troy, NY (2014).
[33] Y. Zhang, J. Lou, K.L. Jenko, J.D. Marks, S.M. Varnum, Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays, Analytical Biochemistry 430(2) (2012) 185-192.
[34] S.M. Mousavi, S.A. Hashemi, M. Yari Kalashgrani, N. Omidifar, C.W. Lai, N. Vijayakameswara Rao, A. Gholami, W.-H. Chiang, The pivotal role of quantum dots-based biomarkers integrated with ultra-sensitive probes for multiplex detection of human viral infections, Pharmaceuticals 15(7) (2022) 880.
[35] Y. Wang, K.M. Schill, H.C. Fry, T.V. Duncan, A quantum dot nanobiosensor for rapid detection of botulinum neurotoxin serotype E, ACS sensors 5(7) (2020) 2118-2127.
[36] E.A. Rakha, E. Chmielik, F.C. Schmitt, P.H. Tan, C.M. Quinn, G. Gallagy, Assessment of predictive biomarkers in breast cancer: challenges and updates, Pathobiology 89(5) (2022) 263-277.
[37] M. Wang, R.S. Herbst, C. Boshoff, Toward personalized treatment approaches for non-small-cell lung cancer, Nature Medicine 27(8) (2021) 1345-1356.
[38] R. Riahi, S.A.M. Shaegh, M. Ghaderi, Y.S. Zhang, S.R. Shin, J. Aleman, S. Massa, D. Kim, M.R. Dokmeci, A. Khademhosseini, Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers, Scientific Reports 6(1) (2016) 24598.
[39] Y.-J. Fan, C.-Z. Deng, P.-S. Chung, W.-C. Tian, H.-J. Sheen, A high sensitivity bead-based immunoassay with nanofluidic preconcentration for biomarker detection, Sensors and Actuators B: Chemical 272 (2018) 502-509.
[40] L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, J. Zhao, Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels, Biosensors and Bioelectronics 80 (2016) 300-306.
[41] Y. Bai, Y. Lu, K. Wang, Z. Cheng, Y. Qu, S. Qiu, L. Zhou, Z. Wu, H. Liu, J. Zhao, Rapid isolation and multiplexed detection of exosome tumor markers via queued beads combined with quantum dots in a microarray, Nano-Micro Letters 11 (2019) 1-11.
[42] Z. Guo, T. Hao, S. Du, B. Chen, Z. Wang, X. Li, S. Wang, Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene asconductingbridge, Biosensors and Bioelectronics 44 (2013) 101-107.
[43] A. Kovarova, G. Kastrati, J. Pekarkova, R. Metelka, J. Drbohlavova, Z. Bilkova, R. Selesovska, L. Korecka, Biosensor with electrochemically active nanocomposites for signal amplification and simultaneous detection of three ovarian cancer biomarkers, Electrochimica Acta 469 (2023) 143213.
[44] H. Di, Z. Mi, Y. Sun, X. Liu, X. Liu, A. Li, Y. Jiang, H. Gao, P. Rong, D. Liu, Nanozyme-assisted sensitive profiling of exosomal proteins for rapid cancer diagnosis, Theranostics 10(20) (2020) 9303.
[45] Z. Huang, X. Zhao, J. Hu, C. Zhang, X. Xie, R. Liu, Y. Lv, Single-nanoparticle differential immunoassay for multiplexed gastric cancer biomarker monitoring, Analytical Chemistry 94(37) (2022) 12899-12906.
[46] P. Hänggi, F. Marchesoni, Introduction: 100 years of Brownian motion, American Institute of Physics, 2005, p. 026101.
[47] C.C. Miller, The Stokes-Einstein law for diffusion in solution, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 106(740) (1924) 724-749.
[48] R. Wilson, The use of gold nanoparticles in diagnostics and detection, Chemical Society Reviews 37(9) (2008) 2028-2045.
[49] S.G. Penn, L. He, M.J. Natan, Nanoparticles for bioanalysis, Current Opinion in Chemical Biology 7(5) (2003) 609-615.
[50] L. Xu, N. Shoaie, F. Jahanpeyma, J. Zhao, M. Azimzadeh, K.T. Al, Optical, electrochemical and electrical (nano) biosensors for detection of exosomes: A comprehensive overview, Biosensors and Bioelectronics 161 (2020) 112222.
[51] J. Bettmer, M. Corte-Rodríguez, M.F. Mesko, Elemental mass spectrometry for bioanalysis, Analytical and Bioanalytical Chemistry (2024) 1-2.
[52] J.-M. Steils, M. Lang, M. Kraus, K. Schöne, J. Cashman, C. Baumgartner, A Novel Approach for Single Step Analyte Fractionation of Raw Milk Prior to Antbiotica Residue Trace Analysis as an Alternative to QuEchERS Based Extraction, Journal of AOAC International (2024) qsae022.
[53] M. Wang, Z. Liu, C. Liu, W. He, D. Qin, M. You, DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends, Biosensors and Bioelectronics (2024) 116122.
[54] V.K. Sarhadi, G. Armengol, Molecular biomarkers in cancer, Biomolecules 12(8) (2022) 1021.
[55] R. Goldoni, A. Scolaro, E. Boccalari, C. Dolci, A. Scarano, F. Inchingolo, P. Ravazzani, P. Muti, G. Tartaglia, Malignancies and biosensors: A focus on oral cancer detection through salivary biomarkers, Biosensors 11(10) (2021) 396.
[56] Y. Chandrasekaran, L. Kayal, N.A. Babu, M.K.D. Jothinathan, A. Behera, Salivary biomarkers: A promising avenue for advancing oral cancer detection, Elsevier, 2024, p. 100315.
[57] G. Lippi, B.M. Henry, Neutrophil-to-lymphocyte ratio in acute coronary syndromes: Do we (really) need another hero?, Polish Heart Journal (Kardiologia Polska) 82(3) (2024) 255-256.
[58] H. Padinharayil, A. George, Small extracellular vesicles: multi-functional aspects in non-small cell lung carcinoma, Critical Reviews in Oncology/Hematology (2024) 104341.
[59] H.-P. Cheng, H.-S. Chuang, Rapid and sensitive nano-immunosensors for botulinum, ACS sensors 4(7) (2019) 1754-1760.
[60] A. Einstein, Investigations on the Theory of the Brownian Movement, Courier Corporation1956.
[61] H.-S. Chuang, Y.-J. Chen, H.-P. Cheng, Enhanced diffusometric immunosensing with grafted gold nanoparticles for detection of diabetic retinopathy biomarker tumor necrosis factor-α, Biosensors and Bioelectronics 101 (2018) 75-83.
[62] J.G. Santiago, S.T. Wereley, C.D. Meinhart, D. Beebe, R.J. Adrian, A particle image velocimetry system for microfluidics, Experiments in Fluids 25(4) (1998) 316-319.
[63] M. Olsen, R. Adrian, Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry, Experiments in Fluids 29(Suppl 1) (2000) S166-S174.
[64] R.J. Adrian, C.-S. Yao, Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials, Applied Optics 24(1) (1985) 44-52.
[65] Yu-Ju Chen, A Rapid Screening Technique for Low Abundance Analytes Based on Diffusometry with Functionalized Nanobeads, Department of Biomedical Engineering, National Cheng Kung University, National Cheng Kung University, Tainan, 2016, p. 65.
[66] E.J. Schantz, E.A. Johnson, Properties and use of botulinum toxin and other microbial neurotoxins in medicine, Microbiology and Molecular Biology Reviews 56(1) (1992) 80-99.
[67] N. Panjwani, R. O'Keeffe, A. Pickett, Biochemical, functional and potency characteristics of type A botulinum toxin in clinical use, The Botulinum Journal 1(1) (2008) 153-166.
[68] J. Frevert, Content of botulinum neurotoxin in botox®/vistabel®, dysport®/azzalure®, and xeomin®/bocouture®, Drugs in R & D 10(2) (2010) 67-73.
[69] A. Marchetti, R. Magar, L. Findley, J.P. Larsen, Z. Pirtosek, E. Råužižka, R. Jech, J. Sławek, F. Ahmed, Retrospective evaluation of the dose of Dysport and BOTOX in the management of cervical dystonia and blepharospasm: the REAL DOSE study, Movement Disorders: Official Journal of the Movement Disorder Society 20(8) (2005) 937-944.
[70] D. Ranoux, C. Gury, J. Fondarai, J. Mas, M. Zuber, Respective potencies of Botox and Dysport: a double blind, randomised, crossover study in cervical dystonia, Journal of Neurology, Neurosurgery & Psychiatry 72(4) (2002) 459-462.