簡易檢索 / 詳目顯示

研究生: 尹子維
Yin, Tzu-Wei
論文名稱: 應用貝氏時空結合玻茨模型於台灣交通事故發生率之分析
Application of Bayesian Spatiotemporal Models with Potts to Analyze the Incident Rate of Traffic Accidents in Taiwan
指導教授: 李國榮
Lee, Kuo-Jung
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 52
中文關鍵詞: 貝氏分析廣義線性模型玻茨模型時空模型
外文關鍵詞: Bayesian, GLM, Potts, Spatiotemporal Model
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這個研究中,我們建立一套貝氏時空廣義線性迴歸架構,結合 Potts 模型以捕捉交通事故發生率及其相關風險因子中的空間依存性與潛在的空間群集。推論方法採用 Metropolis-within-Gibbs 取樣演算法進行貝氏推斷。模擬研究結果顯示,本模型能有效辨識具有影響力的解釋變數,並能準確找出潛在的空間異質性結構及其對應之迴歸效果。

    本研究進一步將模型應用於臺灣政府資料開放平台所提供之交通事故資料,涵蓋 2023 年 1 月至 2023 年 12 月的觀測期間。分析結果顯示,臺灣 349 個鄉鎮市區間的事故風險差異,主要源於關鍵影響因子之空間異質性。特別是,在臺灣中南部地區觀察到環境效應具有明顯的空間聚集現象。

    In this research, we develop a Bayesian spatiotemporal generalized linear regression framework incorporating a Potts model to capture spatial dependence and latent regional clustering in traffic incidence and its associated risk factors. Bayesian inference is conducted via a Metropolis-within-Gibbs sampling algorithm. Results from simulation studies demonstrate the model's effectiveness in identifying influential covariates and in recovering latent spatial heterogeneity structures along with their corresponding regression effects.

    The model is applied to traffic accident data from the Taiwan Open Government Data Platform, covering the period from January 2023 to December 2023. The analysis shows that variations in incident risk across 349 townships in Taiwan are attributable to spatial heterogeneity in key contributing factors. In particular, evidence of spatial clustering in environmental effects is observed in central and southern Taiwan.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables vi List of Figures vii Nomenclature viii Chapter 1. Introduction 1 Chapter 2. Related Work 3 2.1. Poisson GLM for Rate 3 2.2. Variable Selection 4 2.3. Spatial Dependence and CAR model 5 2.3.1. Exploratory Tools for Areal Data 5 2.3.2. Conditional Autoregressive Model 6 2.4. Bayesian Inference and MCMC 8 2.4.1. MCMC 9 2.5. Path Sampling 10 Chapter 3. Statistical Model 13 3.1. Temporal Effect 13 3.2. Spatial Effect 13 3.3. Latent Variables 14 3.4. Posterior Distribution and Gibbs Sampling 15 Chapter 4. Simulation 18 4.1. Raster Simulation 18 4.1.1. Simulation Consequences 19 4.2. Actual Geographical Map Simulation 20 4.2.1. Simulation Consequences 21 Chapter 5. Data Analysis 24 5.1. Traffic Accidient Analysis 24 5.1.1. Covariate Description and Data Preprocessing 24 5.2. Descriptive Statistics 25 5.2.1. Parameter Estimation and Conclusions 27 Chapter 6. Conclusion 31 References 32 Appendix A. Posterior Distribution 34 Appendix B. Correlation of Covariates 37

    S. Banerjee, B. P. Carlin, and A. E. Gelfand. Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC, 2003.
    J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society: Series B (Methodological), 36(2):192–225, 1974.
    J. Besag, J. York, and A. Mollié. Bayesian image restoration, with two applications in spatial statistics. Annals of the institute of statistical mathematics, 43:1–20, 1991.
    E. L. Frome and H. Checkoway. Use of poisson regression models in estimating incidence rates and ratios. American journal of epidemiology, 121(2):309–323, 1985.
    A. Gelman and X.-L. Meng. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical science, pages 163–185, 1998.
    A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data analysis. Chapman and Hall/CRC, 1995.
    E. I. George and R. E. McCulloch. Approaches for bayesian variable selection. Statistica sinica, pages 339–373, 1997.
    M. Kim and L. Wang. Generalized spatially varying coefficient models. Journal of Computational and Graphical Statistics, 30(1):1–10, 2021.
    B. G. Leroux, X. Lei, and N. Breslow. Estimation of disease rates in small areas: a new mixed model for spatial dependence. In Statistical models in epidemiology, the environment, and clinical trials, pages 179–191. Springer, 2000.
    Y. Ma, M. Wang, and X. Chen. Identification and estimation of latent group structures in spatial autoregressive panels. Available at SSRN 4868881, 2024.
    A. Mozdzen, A. Cremaschi, A. Cadonna, A. Guglielmi, and G. Kastner. Bayesian modeling and clustering for spatio-temporal areal data: an application to italian unemployment. Spatial Statistics, 52:100715, 2022.
    D. Saha, P. Alluri, A. Gan, and W. Wu. Spatial analysis of macro-level bicycle crashes using the class of conditional autoregressive models. Accident Analysis & Prevention, 118:166–177, 2018.
    C. Wang, M. A. Quddus, and S. G. Ison. Impact of traffic congestion on road accidents: A spatial analysis of the m25 motorway in england. Accident Analysis & Prevention, 41(4):798–808, 2009.
    P. Xu and H. Huang. Modeling crash spatial heterogeneity: Random parameter versus geographically weighting. Accident Analysis & Prevention, 75:16–25, 2015.
    P. Xu, H. Huang, N. Dong, and S. Wong. Revisiting crash spatial heterogeneity: a bayesian spatially varying coefficients approach. Accident Analysis & Prevention, 98:330–337, 2017.

    無法下載圖示 校內:2029-08-31公開
    校外:2029-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE