| 研究生: |
賴世杰 Lai, Shih-Chieh |
|---|---|
| 論文名稱: |
開發纖維酒精醱酵策略並以薄膜蒸餾進行同步酒精移除 Fermentation strategies for cellulosic ethanol production with in-situ ethanol removal via membrane distillation |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 纖維酒精 、Zymomonas mobilis 、固定化細胞 、纖維素水解酵素 、薄膜蒸餾 、蔗渣 |
| 外文關鍵詞: | Cellulosic ethanol, Zymomonas mobilis, immobilized cell, cellulase, membrane distillation, bagasse |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了避免引起與民爭糧之爭議,目前第二代生質酒精之生產將以非糧食作物 (即含木質纖維素之農林業廢棄物; 如稻桿、蔗渣、木材等)為料源。木質纖維素主要由纖維素、半纖維素及木質素所組成。而大部分自然界存在的酒精醱酵菌株不能直接利用木質纖維素進行醱酵產酒精,因此纖維素水解糖化過程通常是整個纖維酒精製程之速率決定步驟。因此,木質纖維素之前處理及醣化製程十分重要。常用的纖維酒精生產製程主要可分成兩種,分別為兩階段水解醣化醱酵程序(SHF)及同步醣化醱酵程序(SSF),其中又因SSF製程因具有設備成本低廉、減低產物抑制及減低污染可能性之優點而較受到重視。另外,本研究也試圖利用饋料批次(fed-batch)及原位酒精產物移除(in-situ ethanol removal)來克服基質抑制(substrate inhibition)及產物抑制(product inhibition)之問題,以提升整體酒精醱酵效能。
本研究利用固定化Zymomonas mobilis進行酒精醱酵,發現於20%(w/v) 固定化細胞量在葡萄糖濃度20 g/L下有較高的酒精濃度及酒精產生速率,分別為9 g/L 及1.18 g/L/h,且在重複批次試驗及磷酸緩衝溶液組成的醱酵培養基中該固定化細胞皆能穩定地維持相似的酒精產量及酒精產生速率,因而大幅降低其生產成本。另外,本研究也採取兩種碳源進料策略,分別為Constant feeding及Cyclic feeding;其中,以Cyclic feeding的模式可得較高的酒精產率,達理論轉化率的99.45%,顯示固定化菌株確實能將葡萄糖幾近完全轉換為酒精。為了降低酒精抑制,本研究試圖利用薄膜蒸餾(membrane distillation, MD)進行同步酒精移除,其結果顯示酒精抑制現象確實得以消除。在纖維酒精生產程序上,可以分成酵素水解醣化及酒精醱酵兩階段。在酵素水解方面,本研究主要以本實驗室所篩選出的Pseudomonas sp. CL3進行纖維素分解酵素之生產。在該酵素纖維水解醣化之測試方面,於酵素量為3.0 FPU/mL時,可得最大的葡萄糖產生速率(Vmax)及Michaelis constant(Km),分別為1.05 g/L/h 及1.79 g/L。而本研究也試圖針對同步醣化醱酵程序(SSF)及兩階段水解醣化醱酵程序(SHF)進行探討。結果發現,以蔗渣(20 g/L)為碳源時,在SHF系統下有較高的酒精產率,可達理論產率的58.36%,而在SSF系統下僅有30.48%的酒精產率,其原因可能是部分酵素吸附在固定化細胞,造成水解效率下降。藉由添加界面活性劑(Tween-80)確實可以提升整體酵素水解效率,並使SSF系統之酒精產率提升約16.94%。由上述結果顯示,本研究所開發之纖維酒精生產系統確實可穩定操作並得到高酒精產率,但其酒精生產效率仍須再提昇,才能達到商業化之目標。
Bioethanol is the most promising and commercially feasible biofuel which is available at present. To avoid competition with food supply and land for crops, the second generation of bioethanol is to be produced from lignocellulosic feedstock, such as agricultural wastes (rice straw, bagasse, and etc.) and forestry residues (wood, leaves, and etc.). However, most ethanol-producing microorganisms cannot directly utilize cellulose or hemicellulose as carbon source to grow and produce ethanol, leading to the major limitation of biofuels production by lignocellulosic materials. Therefore, pretreatment and hydrolysis of the lignocellulosic feedstock are often required prior to cellulosic bioethanol production. The cellulosic ethanol could be produced by either simultaneous saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF) processes. SSF is usually more favorable due to the merits of lower costs, fewer product inhibition, and lower risk of contamination. This study also tried to use fed-batch strategy and in-situ ethanol removal to improve ethanol production efficiency and to overcome the problems with substrate and product inhibition.
In this work, saccharified sugars were used to produce ethanol by immobilized Zymomonas mobilis cells, resulting in a ethanol concentration and productivity of 9 g/L and 1.18 g/L/h, respectively, with 20% (w/v) of immobilized cells and a glucose concentration of 20 g/L. The immobilized resting-cells could produce ethanol on a phosphate buffer containing enzymatic hydrolysate of lignocellulosic feedstock to reduce the cost of bioethanol production. There were two fed-batch strategies used for ethanol production, including constant and cyclic feeding. The ethanol produced from immobilized cells by cyclic feeding could convert glucose into ethanol completely, resulting in a higher yield of 99.45% (against the theoretical value) than that obtained by constant feeding (46.09%). Using membrane distillation (MD) could remove ethanol in-situ, thereby alleviating the product inhibition caused by ethanol and concentrating ethanol in the permeate.
Cellulosic bioethanol was produced by enzymatic hydrolysis and simultaneous fermentation of the resulting sugars. For the aspect of enzymatic hydrolysis, cellulases were produced from Pseudomonas sp. CL3 and used to hydrolyzed pretreated lignocellulosic feedstock. The maximum glucose production rate (Vmax) and Michaelis constant (Km) with enzyme dosage of 3.0 FPU/mL were 1.05 g/L/h and 1.79 g/L, respectively. The enzymatic cellulose hydrolysates were used to produce ethanol with immobilized Z. mobilis cells by SHF and SSF processes. The SHF process could obtain higher ethanol concentration and yield (4.61 g/L and 58.36% of theoretical yield) than those by SSF process (2.41 g/L and 30.48% of theoretical yield). This is due mainly to the insufficient enzyme dosage in SSF process, in which some of the cellulase enzymes added to the fermentation medium adsorbed on immobilization matrix leading to inefficient saccharification of cellulosic substrate. The ethanol yield increased by 16.94% in SSF process when adding 0.5% Tween-80 in the fermentation medium, suggesting that the surfactant could decrease adsorption of the enzyme on the immobilized matrix.
The results of this work are expected to provide useful information on assessing the feasibility of the proposed ethanol production system. The efficiency of bioethanol production should still be enhanced to reach the goal of commercialization.
Arato, C., Pye, E. K., Gjennestad, G., The lignol approach to biorefining of woody biomass to produce ethanol and chemicals, Applied Biochemistry and Biotechnology, 121, 871-882 (2005).
Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., Ballesteros, I., Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875, Process Biochemistry, 39, 1843-1848 (2004).
Bansal, P., Hall, M., Realff, M. J., Lee, J. H., Bommarius, A. S., Modeling cellulase kinetics on lignocellulosic substrates, Biotechnology Advances, 27, 833-848 (2009).
Béguin, P., Aubert, J. P., The biological degradation of cellulose, FEMS Microbiological Reviews, 13, 25-58 (1994).
Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., Schmidt, A. S., Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose, Biotechnology and Bioengineering, 49, 568-577 (1995).
Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Chemistry, 72, 248-254 (1976).
Brown, M. A., Levine, M. D., Romm, J. P., Rosenfeld, A. H., Koomey, J. G., Engineering-economic studies of energy technologies to reduce greenhouse gas emissions: opportunities and challenges, Annual Review of Energy and the Environment, 23, 287-385 (1998).
Cadoche, L., Lopez, G. D., Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes, Biological Wastes, 30, 153-157 (1989).
Carpita, N. C., Structure and Biogenesis of the cell walls of grasses, Annual Review of Plant Physiology and Plant Molecular Biology, 47, 445-476 (1996).
Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., Saddler, J. N., Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?, Advances in Biochemical Engineering/ Biotechnology, 108, 67-93 (2007).
Chang, V. S., Holtzapple, M. T., Fundamental factors affecting biomass enzymatic reactivity, Applied Biochemistry and Biotechnology, 84, 5-37 (2000).
Chum, H. L., Johnson, D. K., Black, S., Baker, J., Grohmann, K., Sarkanen, K. V., Organosolv pretreatment for enzymatic hydrolysis of poplars: I. enzyme hydrolysis of cellulosic residues, Biotechnology and Bioengineering, 31, 643-649 (1988).
Chundawat, S. P. S., Venkatesh, B., Dale, B. E., Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility, Biotechnology and Bioengineering, 96, 219-231 (2007).
Dadi, A. P., Schall, C. A., Varanasi, S., Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment, Applied Biochemistry and Biotechnology, 136, 407-422 (2007).
Dadi, A. P., Varanasi, S. Schall, C. A., Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step, Biotechnology and Bioengineering, 95, 904-910 (2006).
Dellomonaco, C., Fava, F., Gonzalez, R., The path to next generation biofuels: successes and challenges in the era of synthetic biology, Microbial Cell Factories, 9, 1-15 (2010).
Demain, A. L., Newcomb, M., Wu, J. H. D., Cellulase, clostridia, and ethanol, Microbiology and Molecular Biology Reviews, 69, 124-154 (2005).
EEA (European Environment Agency), How much bioenergy can Europe produce without harming the environment?, EEA Report (2006).
EIA (Energy Information Administration), Official Energy Statistics of the Department of Energy, USA(2006). (http://www.eia.doe.gov/)
Eklund, R., Galbe, M., Zacchi, G., The influence of SO2 and H2SO4 impregnation of willow prior to steam pretreatment, Bioresource Technology, 52, 225-229 (1995).
El-Bourawi, M. S., Ding, Z., Ma, R., Khayet, M., A framework for better understanding membrane distillation separation process, Journal of Membrane Science, 285, 4-29 (2006).
Esser, K., Karsch, T., Bacterial ethanol production: advantages and disadvantages, Process Biochemistry, 19, 116-121 (1984).
Fan, L. T., Gharpuray, M. M., Lee, Y.-H., Cellulose Hydrolysis, Biotechnology Monographs, Springer, Berlin, 3, p 57 (1987).
Fan, L. T., Lee, Y., Gharpuray, M. M., The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis, Advances in Biochemical Engineering/Biotechnology, 23, 157-187 (1982).
Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O' Hare, M., Kammen, D. M., Ethanol can contribute to energy and environmental goals, Science, 311, 506-508 (2006).
Feng, L., Chen, Z.-L, Research progress on dissolution and functional modification of cellulose in ionic liquids, Journal of Molecular Liquids, 142, 1-5 (2008).
Fink, H.-P., Weigel, P., Purz, H. J., Ganster, J., Structure formation of regenerated cellulose materials from NMNO-solutions, Progress in Polymer Science, 26, 1473-1524 (2001).
Fukaya, Y., Hayashi, K., Wada, M., Ohno, H., Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions, Green Chemistry, 10, 44-46 (2008).
Fukuda, H., Kondo, A., Tamalampudi, S., Bioenergy: sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts, Biochemical Engineering Journal, 44, 2-12 (2009).
Galbe, M., Zacchi, G., A review of the production of ethanol from softwood, Applied Microbiology and Biotechnology, 59, 618-628 (2002).
Gáspár, M., Kálmán, G., Réczey,K., Corn fiber as a raw material for hemicellulose and ethanol production, Process Biochemistry, 42, 1135-1139 (2007).
Gauss, W. F., Suzuki, S., Takagi, M., Manufacture of alcohol from cellulosic materials using plural ferments , US patent, 3,990,944 (1976).
Ghose, T. K., Measurement of cellulase activities, Pure and Applied Chemistry, 59, 257-268 (1987).
Gregg, D. J., Saddler, J. N., Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process, Biotechnology and Bioengineering, 51, 375-383 (1996).
Gryta, M., Morawski, A. W., Tomaszewska, M., Ethanol production in membrane distillation bioreactor, Catalysis Today, 56, 159-165 (2000).
Gryta, M., The assessment of microorganism growth in the membrane distillation system, Desalination, 142, 79-88 (2002).
Heinze, T., Schwikal, K., Barthel, S., onic liquids as reaction medium in cellulose functionalization, Macromolecular Bioscience, 5, 520-525 (2005).
Holtzapple, M. T., Davison, R. R., Stuart, E. D., Biomass refining process, US patent, 5,171,592 (1992).
Holtzapple, M. T., Jun, J.-H., Ashok, G., Patibandla, S. l., Dale, B. E., The ammonia freeze explosion (AFEX) process – A pratical lignocellulose pretreatment, Applied Biochemistry and Biotechnology, 28, 59-74 (1991).
Hong, J., Wang, Y., Kumagai, H., Tamaki, H., Construction of thermotolerant yeast expressing thermostable cellulase genes, Journal of Biotechnology, 130, 114-123 (2007).
Huang, H.-J., Ramaswamy, S., Tschirner, U. W., Ramarao, B. V., A review of separation technologies in current and future biorefineries, Separation and Purification Technology, 62, 1-21 (2008).
IPCC (Intergovernmental Panel on Climate Change), Fourth assessment report (AR4): climate change 2007, World Meteorological Organization (2007).
Jin, S., Chen, H., Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis, Biochemical Engineering Journal, 20, 25-230 (2006).
Jørgensen, H., Kristensen, J. B., Felby, C., Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities, Biofuels, Bioproducts and Biorefining, 1, 119-134 (2007).
Jørgensen, H., Kutter, J. P., Olsson, L., Separation and quantification of cellulases and hemicellulases by capillary electrophoresis, Analytical Biochemistry, 317, 85-93 (2003).
Kassim, E. A., El-Shahed, A. S., Enzymatic and chemical hydrolysis of certain cellulosic materials, Agricultural Wastes, 17, 229-233 (1986).
Keshwani, D. R., Cheng, J. J., Switchgrass for bioethanol and other value-added applications: A review, Bioresource Technology, 100, 1515-1523 (2009).
Kilzer, F. J., Broido, A., Speculations on the nature of cellulose pyrolysis, Pyrodynamics, 2, 151-163 (1965).
Kim, K. H., Hong, J., Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis, Bioresource Technology, 77, 139-144 (2001).
Kim, T. H., Lee, Y. Y., Fractionation of corn stover by hot-water and aqueous ammonia treatment, Bioresource Technology, 97, 224-232 (2006).
Kojima, Y., Yoon, S.-L., Improved enzymatic hydrolysis of waste paper by ozone pretreatment, Journal of Material Cycles and Waste Management, 10, 134-139 (2008).
Kosan, B., Michels, C., Meister, F., Dissolution and forming of cellulose with ionic liquids, Cellulose, 15, 59-66 (2008).
Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., Koutinas, A. A., Immobilization technologies and support materials suitable in alcohol beverages production: a review, Food Microbiology, 21, 377-397 (2004).
Kuhad, R. C., Singh, A., Eriksson, K.-E. L., Microorganisms and enzymes involved in the degradation of plant fiber cell walls, Advances in Biochemical Engineering/Biotechnology, 57, 47-125 (1997).
Kumakura, M., Kaetsu, I., Effect of radiation pretreatment of bagasse on enzymatic and acid hydrolysis, Biomass, 3, 199-208 (1983).
Kumakura, M., Kaetsu, I., Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose, Agricultural Wastes, 9, 279-287 (1984).
Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P., Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuels production, Industrial & Engineering Chemistry Research, 48, 3713-3729 (2009).
Kuo, C.-H., Lee, C.-K., Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment, Bioresource Technology, 100, 866-871 (2009).
Kurakake, M., Ide, N., Komaki, T., Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper, Current Microbiology, 54, 424-428 (2007).
Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal Jr., M. J., Lynd, L. R., A comparison of liwuid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol, Bioresource Technology, 81, 33-44 (2002).
Lebeau, T., Jouenne, T., Junter, G.-A., Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor, Enzyme and Mirobial Technology, 21, 265-272 (1997)
Lee, J. M., Jameel, H., Venditti, R. A., Effect of ozone and autohydrolysis pretreatments on enzymatic digestibility of Coastal Bermuda grass, Bioresources, 5, 1084-1101 (2010).
Liying, Liu, Hongzhang, C., Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl, Chinesse Science Bulletin, 51, 2432-2436 (2006).
Lynd, L. R., Weimer, P. J., Zyl, W. H. v., Pretorius, I. S., Microbial cellulose utilization: fundamentals and biotechnology, Microbiology and Molecular Biology Reviews, 66, 506-577 (2002).
Lynd, L. R., Zyl, W. H. v., McBride, J. E., Laser, M., Consolidated bioprocessing of cellulosic biomass: an update, Current Opinion in Biotechnology, 16, 577-583 (2005).
Ma, H., Liu, W.-W., Chen, X., Wu, Y.-J., Yu, Z.-L., Enhanced enzymatic saccharification of rice straw by microwave pretreatment, Bioresource Technology, 100, 1279-1284 (2009).
Mackie, K. L., Brownell, H. H., West, K. L., Saddler, J. N., Effect of sulphur dioxide and sulphuric acid on steam explosion of aspenwood, Journal of wood chemistry and Technology, 5, 405-425 (1985).
Mamar, S. A. S., Hadjadj, A., Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 35, 451-455 (1990).
McMillan, J. D. Pretreatment of lignocellulosic biomass. In Enzymatic ConVersion of Biomass for Fuels Production; Himmel, M. E., Baker, J. O., Overend, R. P., Eds.; American Chemical Society: Washington, DC, 292-324 (1994).
Michaelis, L., Menten, M. L., Die kinetik der invertinwirkung, Biochemische Zeitschrift, 49, 333-369 (1913)
Miller, G. L., Use of dinitrosaiicyiic acid reagent for determination of reducing sugar, Analytical Chemistry, 31, 426-428 (1959).
Millet, M. A., Baker, A. J., Scatter, L. D., Physical and chemical pretreatment for enhancing cellulose saccharification, Biotechnology & Bioengineering Symposium, 6, 125-153 (1976).
Mishima, D., Tateda, M., Ike, M., Fujita, M., Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes, Bioresource Technology, 97, 2166-2172 (2006).
Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., Ladisch, M. R., Optimization of pH controlled liquid hot water pretreatment of corn stover, Bioresource Technology, 96, 1986-1993 (2005).
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., Ladisch, M., Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technology, 96, 673-686 (2005).
Moxley, G., Zhang, Y.-H. P., More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification, Energy and Fuels, 21, 3684-3688 (2007).
Neely, W. C., Factors affecting the pretreatment of biomass with gaseous ozone, Biotechnology and Bioengineering, 26, 59-65 (1984).
Nitisinprasert, S., Temmes, A., The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CM126 isolated from municipal sewage sludge, Journal of Applied Bacteriology, 71, 154-161 (1991).
NREL, Determination of structural carbohydrates and lignin in biomass, Technical Report, USA (2008).
NREL, Measurement of cellulase activities, Technical Report, USA (1996).
Olsson, L., Hahn-Hägerdal, B., Fermentation of lignocellulosic hydrolysates for ethanol production, Enzyme and Microbial Technology, 18, 312-331 (1996).
Palonen, H., Thomsen, A. B., Tenkanen, M., Schmidt, A. S., Viikari, L., Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood, Applied Biochemistry and Biotechnology, 117, 1-17 (2004).
Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Ziao, Z., Zhang, X., Saddler, J., Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products, Biotechnology and Bioengineering, 90, 473-481 (2005).
Pan, X., Gilkes, N., Kadla, J., Pye, K., Sake, S., Gregg, D., Ehara, K., Xie, D., Lam, D., Saddler, J., Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields, Biotechnology and Bioengineering, 94, 851-861 (2006).
Panesar, P. S., Marwaha, S. S., Kennedy, J. F., Zymomonas mobilis: an alternative ethnaol producer, Journal of Chemical Technology and Biotechnology, 81, 623-635 (2006).
Pérez, J., Muñoz-Dorado, J., Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview, International Microbiology, 5, 53-63 (2002).
Petersen, J.-E., Energy production with agricultural biomass: environmental implications and analytical challenges, European Review of Agricultural Economics, 35, 385-408 (2008).
Philippidis, G. P., Smith, T. K., Limiting factors in the simultaneous saccharification and fermentation process for conversion of cellulosic biomass to fuel ethanol, Applied Biochemistry and Biotechnology, 51, 117-124 (1995).
Pilkington, P. H., Margaritis, A., Mensour, N. A., Russell, I., Fundamentals of immobilised yeast cells for continuous beer fermentation: A review, Journal of the Institute of Brewing, 104, 19-31 (1998).
Quesada, J., Rubio, M., Gómez, D., Ozonation of lignin rich solid fractions from corn stalks, Journal of Wood Chemistry and Technology, 19, 115-137 (1999).
Rabinovich, M. L., Melnik, M. S., Bolobova, A. V., Microbial cellulases (review), Applied Biochemistry and Biotechnology, 38, 305-321 (2002).
Ryu, S. K., Lee, J. M., Bioconversion of waste cellulose by using an attrition bioreactor, Biotechnology and Bioengineering, 25, 53-65 (1983).
Saha, B. C., Cotta, M. A., Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol, Enzyme and Microbial Technology, 41, 528-532 (2007).
Saha, B. C., Cotta, M. A., Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw, Biotechnology Progress, 22, 449-453 (2006).
Selvakumar P., Ashakumary L., Pandey A., Microbial fermentations with immobilized cells, Journal of Scientific and Industrial Research, 55, 443-449 (1994).
Shafizadeh, F., Bradbury, A. G. W., Thermal degradation of cellulose in air and nitrogen at low temperature, Journal of Applied Polymer Science, 23, 1431-1442 (1979).
Shafizadeh, F., Lai, Y.-Z., Thermal degradation of 2-deoxy-D-arabino-hexonic acid and 3-deoxy-D-ribo-hexono-1,4-lactone, Carbohydrate Research , 42, 39-53 (1975).
Sidiras, D. K., Koukios, E. G., Acid saccharification of ball-milled straw, Biomass, 19, 289-306 (1989).
Sidiras, D., Koukios, E., Simulation of acid-catalysed organosolv fractionation of wheat straw, Bioresource Technology, 94, 91-98 (2004).
Sidiras, D., Koukios, E., Simulation of acid-catalysed organosolv fractionation of wheat straw, Bioresource Technology, 94, 91-98 (2004).
Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., Osborne, J., A comparison of chemical pretreatment methods for improving saccharification of cotton stalks, Bioresource Technology, 98, 3000-3011 (2007).
Singh, P., Suman, A., Tiwari, P., Arya, N., Gaur, A., Shrivastava, Biological pretreatment of sugarcane trash for its conversion to fermentable sugars, World Journal of Microbiology and Biotechnology, 24, 667-673 (2008).
Sinititsyn, A. P., Gusakov, A. V., Davydkin, I. Y., Davydkin, V. Y., Protas, O. V., A hyperefficient process for enzymatic cellulose hydrolysis in the intensive mass transfer reactor, Biotechnology Letters, 15, 283-288 (1993).
South, C. R., Hogsett, D. A., Lynd, L. R., Continuous fermentation of cellulosic biomass to ethanol, Applied Biochemistry and Biotechnology, 39, 587-600 (1993).
Sun, X. F., Xu, F., Sun, R. C., Fowler, P., Baird, M. S., Characteristics of degraded cellulose obtained from steam-exploded wheat straw, Carbohydrate Research, 340, 97-106 (2005).
Sun, Y., Cheng, J., Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technology, 83, 1-11 (2002).
Taherzadeh, M. J., Karimi, K., Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review, International Journal of Molecular Sciences, 9, 1621-1651 (2008).
Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., Tanaka, T., Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw, Journal of Bioscience and Bioengineering, 100, 637-643 (2005).
Teeri, T. T., Crystalline cellulose degradation: new insight into the function of cellobiohydrolases, Trends in Biotechnology, 15, 160-167 (1997).
Teixeira, L. C., Linden, J. C., Schroeder, H. A., Simultaneous saccharification and cofermentation of peracetic acid–pretreated biomass, Applied Biochemistry and Biotechnology, 84, 111-127 (2000).
Thring, R. W., Chornet, E., Recovery of a solvolytic lignin: effects of spent liquor/acid volume ratio, acid concentration and temperature, Biomass, 23, 289-305 (1990).
Torget, R., Hsu, T.-A., Two-temperature dilute-acid prehydrolysis of hardwood xylan using a percolation process, Applied Biochemistry and Biotechnology, 45, 5-22 (1994).
Tu, M., Saddler, J. N., Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood, Applied Biochemistry and Biotechnology, 161, 274-287 (2010).
Tu, M., Zhang, X., Kurabi, A., Gilkes, N., Mabee, W., Saddler, J., Immobilization of β-glucosidase on Eupergit C for lignocellulose hydrolysis, Biotechnology Letters, 28, 151-156 (2006).
Vaccarino, C., Lo Curto, R. B., Tripodo, M. M., Bellocco, E., Laganá, G., Patané, R., Effect of SO2, NaOH and Na2CO3 pretreatments on the degradability and cellulase digestibility of grape marc, Biological Wastes, 20, 79-88 (1987).
Vane, L. M., Separation technologies for the recovery and dehydration of alcohols from fermentation broths, Biofuels, Bioproducts and Biorefining, 2, 553-588 (2008).
Varga, E., Klinke, H. B., Réczey, K., Thomsen, A. B., High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol, Biotechnology and Bioengineering, 88, 567-574 (2004b).
Varga, E., Réczey, K., Zacchi, G., Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility, Applied Biochemistry and Biotechnology, 113, 509-523 (2004a).
Vidal, P. F., Molinier, J., Ozonlysis of lignin – improvement of in vitro digestibility of poplar sawdust, Biomass, 16, 1-17 (1988).
Wang, M., Wu, M., Huo, H., Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types, Environmental Research Letters, 2, 1-13 (2007).
Wheals, A. E., Basso, L. C., Alves D. M. G., Amorim, H. V., Fuel ethanol after 25 years, Trends in Biotechnology, 17, 482-487 (1999).
Willför, S., Sundberg, A., Hemming, J., Holmbom, B., Polysaccharides in some industrially important softwood species, Wood Science and Technology, 39, 245-257 (2005).
Willför, S., Sundberg, A., Hemming, J., Holmbom, B., Polysaccharides in some industrially important hardwood species, Wood Science and Technology, 39, 601-617 (2005).
Wingren, A., Galbe, M., Zacchi, G., Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks, Biotechnology progress, 19, 1109-1117 (2003).
Wu, A., Lee, Y. Y., Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol, Applied Biochemistry and Biotechnology, 70, 479-492 (1998).
Yun, S.-I., Jeong, C.-S., Chung, D.-K., Choi, H.-S., Purification and some properties of a β-glucosidase from Trichoderma harzianum type C-4, Bioscience, Biotechnology, and Biochemistry, 65, 2028-2032 (2001).
Zeng, M., Mosier, N. S., Huang, C.-P., Sherman, D. M., Ladisch, M. R., Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis, Biotechnology and Bioengineering, 97, 265-278 (2007).
Zhang, Y.-H. P., Ding, S.-Y., Mielenz, J. R., Cui, J.-B., Elander, R. T., Laser, M., Himmel, M. E., McMillan, J. R., Lynd, L. R., Fractionating recalcitrant lignocellulose at modest reaction conditions, Biotechnology and Bioengineering, 97, 214-223 (2007).
Zhang, Y.-H. P., Lynd, L. R., A functionally based model for hydrolysis of cellulose by fungal cellulose, Biotechnology and Bioengineering, 94, 888-898 (2006).
Zhao, X., Zhang, L., Liu, D., Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem, Bioresource Technology, 99, 3729-3736 (2008).
Zheng, Y., Lin, H.-M., Wen, J., Cao, N., Yu, X., Tsao, G. T., Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis, Biotechnology Letters, 17, 845-850 (1995).
Zheng, Y., Pan, Z., Zhang, R., Overview of biomass pretreatment for cellulosic ethanol production, International Journal of Agricultural and Biological Engineering, 2, 51-68 (2009).
Zheng, Y., Tsao, G. T., Avicel hydrolysis by cellulase enzyme in supercritical CO2, Biotechnology Letters, 18, 451-454 (1996).
Zhu, S., Use of ionic liquids for the efficient utilization of lignocellulosic materials, Journal of Chemical Technology and Biotechnology, 83, 777-779 (2008).
Zhu, S., Wu, Y., Yu, Z., Wang, C., Yu, F., Jin, S., Ding, Y., Chi, R., Liao, J., Zhang, Y., Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw, Biosystems Engineering, 93, 279-283 (2006).
校內:2020-12-31公開