簡易檢索 / 詳目顯示

研究生: 吳彥廷
Wu, Yeng-Ting
論文名稱: 發展以血管窄化誘發腹主動脈瘤生成的豬模式
Development of Abdominal Aortic Aneurysm in a Porcine Model
指導教授: 江美治
Jiang, Meei-Jyh
共同指導教授: 林寶彥
Lin, Pao-Yen
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 77
中文關鍵詞: 動脈瘤窄化
外文關鍵詞: abdominal aortic aneurysm, coarctation, porcine model
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動脈瘤是一種致死率很高的疾病,形成的過程中並無明顯症狀,因此在臨床上常是意外的被發現,被視為體內的不定時炸彈。截至目前,手術為治療主動脈瘤唯一的方式。臨床上的主動脈瘤病患,若無迫切的危險性並不會執行手術,致使收集的檢體皆為末期的動脈瘤,因此,我們對於動脈瘤的致病機轉,所知仍有限。動脈瘤在病理學上被定義為外徑膨大超過上下端血管50%。本研究採用蘭嶼豬來進行實驗,原因是豬的心血管系統與人類的相似度最高。實驗中,我們假設,改變腹主動脈內的血流狀態會誘導動脈瘤的形成。我們利用窄化的方式改變血液狀態來誘導主動脈瘤生成,並以組織染色來偵測過程中的變化。我們以臨床上廣泛使用的人工血管(Telfon-patch),約2公分長,在腹主動脈距離分叉處約3公分處進行漏斗狀窄化,讓下端的管徑大約減半而上方則不變,導致窄化下端流速提高。在窄化手術後,我們將動物分成存活4週、8週、12週以及對照組,對照組亦以人工血管環繞但未進行窄化。Hematoxylin & eosin染色結果顯示血管在窄化後8週,於窄化的下游端處,內徑已膨大超過50%,窄化後12週變化更加顯著。而彈性纖維的染色結果顯示,在窄化後4週,彈性纖維的密度下降,在8週後,彈性纖維明顯減少,且有斷裂的現象,在12週後,其量更少。在窄化的上游端,彈性纖維亦有減少的現象,但變化不如下游端明顯,在腎動脈上游端的腹主動脈則無明顯差異。膠原蛋白的分布狀況,在窄化後12週,於窄化的下游端有減少的趨勢,而在上游端及腎動脈以上並無顯著的差異。我們亦以平滑肌細胞肌動蛋白(Smooth muscle α-actin)的免疫組織染色來偵測平滑肌細胞的變化,在窄化後12週,窄化下游端的平滑肌細胞明顯的減少。以上的結果與臨床上所觀察到動脈瘤的特徵相似,證實血管窄化可以誘導動脈瘤的生成。

    Aneurysms have a high prevalence in aged populations and exhibit high mortality when rupture. Aneurysms are asymptomatic until the catastrophic event of rupture occurs. Up to date, surgery is the only valid treatment for aneurysm. Because most surgical samples come from late-stage aneurysm, the pathogenesis of aneurysm remains poorly understood. Macroscopically, aneurysm is defined as vascular dilatation that exceeds the outer diameter of normal segment by 50%. Microscopically, aneurysm is characterized by medial thinning with elastic fiber degradation and smooth muscle cell depletion. Abdominal aortic aneurysm (AAA), usually occurring between renal arteries and the iliac bifurcation, accounts for 80% of aneurysm. In this study, we attempted to establish an AAA model in porcinis because porcine cardiovascular system is recognized to be highly similar to that of human. Previous studies indicated that flow disturbance is closely associated with aneurysm formation. Therefore, we hypothesized that long-term coarctation of an infrarenal abdominal aorta segment leads to the formation of AAA. Isolated infrarenal aorta, approximately 3 cm away from the bifurcation of common iliac arteries, was coarctated with a 2-cm Teflon-patch so that vascular diameter decreased approximately 50% at the bottom of coarctated site without changing the top. The sham operational control received Teflon-patch wrapping but not coarctation. After the coarctation, downstream blood flow rate increased. Over 50% dilatation was detected in the distal aortic segments at 8 and 12 weeks after surgery. Concomitantly, medial thinning and adventitial hypertrophy were detected in hematoxylin-and-eosin stained cross sections. In addition, elastic fibers detected with Verhoeff’s staining exhibited lower density at four weeks post-coarctation and were even fewer and more fragmented at 8 and 12 weeks post-coarctation. Elastic fiber density also decreased but was less pronounced in the proximal segment whereas no significant changes were detected in the suprarenal aorta. Collagen fibers detected with Masson’s trichrome markedly increased in the adventitia at 8 weeks but decreased at 12 weeks post-coarctation. Smooth muscle cells detected with smooth muscle-specific α-actin decreased in the distal aortic segments at 12 weeks post-coarctation. These results indicate that changing flow pattern in terminal abdominal aorta with long-term coarctation induces abdominal aortic aneurysm.

    中文摘要--------------------------------3 英文摘要--------------------------------5 致謝------------------------------------7 圖目錄---------------------------------10 緒論-----------------------------------11 研究動機-------------------------------18 材料與方法-----------------------------19 藥品儀器-------------------------------29 結果-----------------------------------34 討論-----------------------------------39 圖表-----------------------------------44 參考文獻-------------------------------71 附圖-----------------------------------76

    1. Manning MW, Cassi LA, Huang J, Szilvassy SJ, Daugherty A. Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease. Vasc Med.2002; 7:45-54.
    2. Verma S, Linday TF. Regression of aortic aneurysms through pharmacologic therapy? N Engl J Med.2006; 354: 2067-8.
    3. Golledge J, Muller J, Daugherty A, Norman P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler Thromb Vasc Biol. 2006; 26:2605-13.
    4. Martin A, Cliffton. Familial abdominal aortic aneurysms. J Vasc Surg.2005; 64:765-766.
    5. Greenhalgh RM, Powell JT. Endovascular repair of abdominal aortic aneurysm. N Engl J Med.2008; 358:494-501.
    6. Pleumeekers HJ, Hoes AW, van der Does E, van Urk H, Hofman A, de Jong PT, Grobbee DE. Aneurysms of the abdominal aorta in older adults. The Rotterdam Study. Am J Epidemiol.1995; 142:1291-9.
    7. Pleumeekers HJ, Hoes AW, Hofman A, van Urk H, van der Does E, Grobbee DE. Selecting subjects for ultrasonographic screening for aneurysms of the abdominal aorta: four different strategies. Int J Epidemiol.1999; 28:682-6.
    8. Singh K, Bønaa KH, Jacobsen BK, Bjørk L, Solberg S. Prevalence of and risk factors for abdominal aortic aneurysms in a population-based study : The Tromsø Study. Am J Epidemiol.2001; 154:236-44.
    9. Simoni G, Pastorino C, Perrone R, Ardia A, Gianrossi R, Decian F, Cittadini G Jr, Baiardi A, Bachi V. Screening for abdominal aortic aneurysms and associated risk factors in a general. Eur J Vasc Endovasc Surg.1995; 10:207-10.
    10. López-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human. Am J Pathol.1997; 150:993-1007.
    11. Clarke MC, Littlewood TD, Figg N, Maguire JJ, Davenport AP, Goddard M, Bennett MR. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res.2008; 102:1529-38.
    12. Kunieda T, Minamino T, Nishi J, Tateno K, Oyama T, Katsuno T, Miyauchi H, Orimo M, Okada S, Takamura M, Nagai T, Kaneko S, Komuro I. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation.2006; 114:953-60.
    13. Saraff K, Babamusta F, Cassis LA, Daugherty A. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol.2003; 23:1621-6.
    14. Freestone T, Turner RJ, Coady A, Higman DJ, Greenhalgh RM, Powell JT. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol.1995; 15:1145-51.
    15. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest.2002; 110:625-32.
    16. Pyo R, Lee JK, Shipley JM, Curci JA, Mao D, Ziporin SJ, Ennis TL, Shapiro SD, Senior RM, Thompson RW. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses. J Clin Invest.2000; 105:1641-9.
    17. Kainulainen K, Karttunen L, Puhakka L, Sakai L, Peltonen L. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet.1994; 6:64-9.
    18. Dietz HC, Loeys B, Carta L, Ramirez F. Recent progress towards a molecular understanding of Marfan syndrome. Am J Med Genet C Semin Med Genet.2005; 15:4-9.
    19. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC. - Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006; 355:788-98
    20. LeMaire SA, Pannu H, Tran-Fadulu V, Carter SA, Coselli JS, Milewicz DM. Severe aortic and arterial aneurysms associated with a TGFBR2 mutation. Nat Clin Pract Cardiovasc Med.2007; 4:167-71.
    21. Nataatmadja M, West M, West J, Summers K, Walker P, Nagata M, Watanabe T. Abnormal extracellular matrix protein transport associated with increased apoptosis of vascular smooth muscle cells in marfan syndrome and bicuspid aortic valve thoracic aortic aneurysm. Circulation.2003; 108:329-34.
    22. Choke E, Cockerill G, Wilson WR, Sayed S, Dawson J, Loftus I, Thompson MM. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg.2005; 30:227-44.
    23. Anidjar S, Dobrin PB, Eichorst M, Graham GP, Chejfec G. - Correlation of inflammatory infiltrate with the enlargement of experimenta aortic aneurysms. J Vasc Surg.1992; 16:139-47.
    24. Xiong W, Zhao Y, Prall A, Greiner TC, Baxter BT. Key roles of CD4+ T cells and IFN-gamma in the development of abdominal aortic aneurysms in a murine model. J Immunol.2004; 172:2607-12.
    25. Eliason JL, Hannawa KK, Ailawadi G, Sinha I, Ford JW, Deogracias MP, Roelofs KJ, Woodrum DT, Ennis TL, Henke PK, Stanley JC, Thompson RW, Upchurch GR Jr. Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation. Circulation.2005; 112:232-40.
    26. Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced. J Biol Chem.1993; 268:23824-9.
    27. Seli E, Pehlivan T, Selam B, Garcia-Velasco JA, Arici A.Estradiol down-regulates MCP-1 expression in human coronary artery endothelial. Fertil Steril.2002; 77:542-7.
    28. Jilma B, Jilma-Stohlawetz P. Female gender, menstrual cycle and estradiol affect plasma levels of monocyte. Cardiovasc Res.2002; 55:416-7.
    29. Krishnaswamy G, Ajitawi O, Chi DS. The human mast cell: an overview. Methods Mol Biol.2006; 315:13-34.
    30. Von Stebut E, Metz M, Milon G, Knop J, Maurer M. Early macrophage influx to sites of cutaneous granuloma formation is dependent on MIP-1alpha /beta released from neutrophils recruited by mast cell-derived TNFalpha. Blood.2003; 101:210-5.
    31. Henz BM, Maurer M, Lippert U, Worm M, Babina M. Mast cells as initiators of immunity and host defense. Exp Dermatol.2001; 10:1-10.
    32. Tsuruda T, Kato J, Hatakeyama K, Kojima K, Yano M, Yano Y, Nakamura K, Nakamura-Uchiyam F, Matsushima Y, Imamura T, Onitsuka T, Asada Y, Nawa Y, Eto T, Kitamura K. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ Res.2008; 102:1368-77.
    33. Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol.2006; 26:987-94.
    34. Zernecke A, Bot I, Djalali-Talab Y, Shagdarsuren E, Bidzhekov K, Meiler S, Krohn R, Schober A, Sperandio M, Soehnlein O, Bornemann J, Tacke F, Biessen EA, Weber C. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res.2008; 102:209-17.
    35. Kadoglou NP, Liapis CD. Matrix metalloproteinases: contribution to pathogenesis, diagnosis, surveillance. Curr Med Res Opin. 2004; 20:419-32.
    36. Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJ, Krams R, de Crom R. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress.Circulation.2006;113:2744-53.
    37. Sho E, Sho M, Hoshina K, Kimura H, Nakahashi TK, Dalman RL. Hemodynamic forces regulate mural macrophage infiltration in experimental aortic aneurysms. Exp Mol Pathol.2004; 76:108-16.
    38. Liu G, Huang Y, Lu XW, Lu M, Huang XT, Li WM, Jiang ME. Optimization of the model of abdominal aortic aneurysm by co-incubation of calcium chloride and collagenase in rats. Saudi Med J.2009; 30:1049-53.
    39. Meng H, Natarajan SK, Gao L, Ionita C, Kolega J, Siddiqui AH, Mocco J. Aneurysmal Changes at the Basilar Terminus in the Rabbit Elastase Aneurysm Model. AJNR Am J Neuroradiol. 2010; Jan 6.
    40. Wang YX, Martin-McNulty B, Freay AD, Sukovich DA, Halks-Miller M, Li WW, Vergona R, Sullivan ME, Morser J, Dole WP, Deng GG Angiotensin II increases urokinase-type plasminogen activator expression and induces aneurysm in the abdominal aorta of apolipoprotein E-deficient mice. Am J Pathol.2001; 159:1455-64.
    41. Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol.2004; 24:429-34.
    42. Crick SJ, Sheppard MN, Ho SY, Gebstein L, Anderson RH. Anatomy of the pig heart: comparisons with normal human cardiac structure. J Ana.1998; 193:105-19.

    下載圖示 校內:2012-02-22公開
    校外:2012-02-22公開
    QR CODE