簡易檢索 / 詳目顯示

研究生: 黃子軒
Huang, Zi-xuan
論文名稱: 利用反應曲面法配合基因演算法分析陣列式高功率LED構裝散熱之最佳設計
Optimal Design of Dissipation for the Array Power LED by the RSM with Genetic Algorithm
指導教授: 陳榮盛
Chen, Rong-cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 158
中文關鍵詞: 基因演算法反應曲面法陣列式LED部份因子設計法
外文關鍵詞: Array LED, Factorial design method, Response surface method, Genetic algorithm
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著LED 發光效能之提升,LED已經漸漸被發展成具有高效能、高可靠度、壽命長、多元目的與消耗功率低等多項功能。因此使得陣列式LED 逐漸被廣泛應用於人類生活中。
    本研究利用ANSYS 有限元素分析軟體對陣列式LED進行熱行為分析。其中陣列式LED之建模係由四顆相同尺寸之LED金屬芯基板與底座散熱塊結合而成。經Flotran熱流分析求出空氣自然對流係數,而對流值可藉由疊代法加以確認,因為對流值被設定為ANSYS熱分析之邊界條件以求出溫度分佈,並使晶片接合溫度及底座散熱塊溫度與產品C1-121的要求相符。
    在進行晶片接合溫度最佳化之前,先以部份因子設計法篩選出顯著的控制因子,再分別以雙反應曲面法與混合反應曲面法建構出迴歸模型,並以反應曲面結合基因演算法進行參數最佳化設計,及討論雙反應曲面法與混合反應曲面法獲得之結果。隨後,以混合反應曲面法探討各參數間的交互作用對晶片接合溫度的影響。最後,研究結果發現金屬芯基板熱傳導係數與底座散熱塊高度對晶片接合溫度的影響最大。其次晶片尺寸與晶片黏著層熱傳導係數之交互作用對晶片接合溫度的影響最為明顯。

    In accordance with the improvement in its luminous efficiency, light emitting diode(LED) has been gradually developed with functions of high power, good reliability, long life, multiple purposes and low power consumption.As a result, the array LED has been broadly applied in human livings nowadays.
    This study applies the ANSYS finite element analysis software to analyze the thermal behaviors of the array LED. The array LED is modeled by 4 same-size LEDs with metal core substrate on a heat-sink. The air natural convection coefficient is obtained by the Flotran heat flow analysis. Thus, this value of the convection can be verified through the iterative method since such convective value is set as the boundary conditions of the ANSYS thermal analysis to obtain the temperature distribution in which the chip junction temperature and heat-sink temperature are conformed the requirement of the C2-121 product.
    Prior to the process of the optimal design on the chip junction temperature, the most significant parameters are chosen by the fractional factorial design method. The regressive models are set up by the double response surface method and the mixed response surface method respectively. Furthermore the genetic algorithm combined with the response surface is applied to obtained the optimal design parameters, then the results obtained by both two methods are discussed. Afterwards, a mixed response surface method is applied to analyze the interactive effects among various parameters on the chip junction temperature. Finally it is found that the metal core substrate thermal conductivity and the heat-sink height are the most significant factors. Besides, the interactive effects between the size of chip and the thermal conductivity of the chip adhesion layer are the most obvious effects on the chip junction temperature.

    中文摘要................................................. I 英文摘要................................................ II 誌謝....................................................III 目錄.....................................................IV 表目錄.................................................VIII 圖目錄...................................................XI 符號說明..............................................XVIII 第一章 緒論 1-1 前言..................................................1 1-2 研究動機與目的........................................2 1-3 文獻回顧..............................................3 1-4 研究方法..............................................5 1-5 章節提要..............................................6 第二章 理論基礎 2-1 發光二極體(LED)研究主題...............................8 2-1-1 ANSYS Multiphysics疊代熱分析........................9 2-2 LED之熱阻............................................10 2-3 金屬芯基板...........................................11 2-4 熱傳原理.............................................12 2-5 ANSYS多重物理領域(Multiphysics)於構裝熱傳分析........18 2-5-1 ANSYS熱分析........................................19 2-5-2 Fltoran熱流分析....................................20 2-6 反應曲面法...........................................23 2-6-1 迴歸模型...........................................23 2-6-2 迴歸因子的實驗水準配置.............................25 2-6-3 迴歸模型的配適性...................................27 2-6-4 殘差分析...........................................29 2-7 基因演算法最佳化.....................................30 第三章 分析模型建立 3-1 單顆LED金屬芯基板....................................45 3-1-1 單顆LED金屬芯基板模型..............................46 3-1-2 單顆LED金屬芯基板模擬..............................46 3-1-3 收斂分析...........................................48 3-1-4 晶片熱負載分析.....................................49 3-2 四顆LED金屬芯基板陣列排在底座散熱塊..................50 3-2-1 四顆LED金屬芯基板陣列排在底座散熱塊之整體模型......50 3-2-2 模型確認...........................................52 第四章 單一因子分析 4-1 單一因子選取與水準值.................................73 4-2 單一因子分析結果.......................................................74 4-3單一因子分析結果探討..................................79 第五章 雙反應曲面與混合反應曲面最佳化 5-1 以部份因子設計法篩選控制因子.........................90 5-1-1 各控制因子水準值與解析度選擇.......................90 5-1-2 部份因子設計法之效果與變異分析.....................91 5-1-3 篩選控制因子.......................................93 5-2 雙反應曲面最佳化.....................................94 5-2-1 分析方法的選擇與建立...............................95 5-2-2 雙反應曲面的建立與檢定.............................95 5-2-3 利用雙反應曲面模型進行基因演算法最佳化.............98 5-3 混合反應曲面法最佳化................................100 5-3-1分析方法的選擇與建立...............................101 5-3-2 混合反應曲面的建立與檢定..........................101 5-3-3 利用混合反應曲面模型進行基因演算法最佳化..........103 5-3-4 比較雙反應與混合反應曲面之基因演算法最佳化........104 5-4 以混合反應曲面法探討因子對晶片接合溫度之影響........104 5-4-1 探討混合反應曲面之一次因子與單一因子分析結果......105 5-4-2 探討因子間交互作用對晶片接合溫度之影響............107 第六章 結論與建議未來研究方向 6-1 結論................................................149 6-2 未來研究方向........................................153

    [1] www.lumiled.com/technology, 2006

    [2]J. Petroski “Thermal Challenges Facing New Generation Light Emitting Diodes(LED) for Lighting Applications ” GELcore, 6180 Halle Dr, Valley

    [3]H. Rainer “ Thermal management of Golden Dragon LED”http://www.flotherm.com, 2002.

    [4]J. Petroski “Spacing of High-brightness LEDs on Metal Substrate PCB’s for Proper Thermal Performance, ” IEEE Inter Society Conference on Thermal Phenomena, pp.507-514, 2004.

    [5]Mehmet Arik “Thermal Management of LEDs: Package to System”,Charles Becker, Stanton Weaver, and James Petroski General Electric Company, Global Research Center, Thermal Systems Laboratory, One Research Circle ES-102, Niskayuna, NY 12309

    [6]N. Narendran and Y. Gu “Life of LED-Based White Light
    Source,”IEEE/OSA Journal of Display Technology, vol.1, no.1

    [7] Petroski “Thermal Challenges Facing New Generation
    LightEmitting Diodes(LEDs) for Lighting Applications ,” Proc. of SPIE,vol.4776

    [8]Qian Cheng “Thermal Management of High-power White LED Package,” School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

    [9]Yang “Thermal Analysis of GaN-Based Light Emitting Diodes With Different Chip Sizes” Lianqiao, Jianzheng Hu, Lan Kim, and Moo Whan Shin, Member, IEEE

    [10]J.P. You “Thermal Management of High Power LEDs: Impact of Die Attach Materials”, Y. He and F.G. Shi Optoelectronics Packaging and Materials Labs University of California, Irvine 916 Engineering Tower Irvine, CA 92697 U.S.A.

    [11] Luo “Thermal analysis of an 80 W light-emitting diode street lamp X”, T. Cheng, W. Xiong, Z. Gan and S. Liu

    [12] http://www.everlight.com

    [13] Yunus A.CENGEL, ”Heat Tansfer”

    [14] Ralph Remsburg “Thermal Design of Electronic Equipment ”Boca Raton: CRC Press LLC, 2001

    [15] http://www.cadmen.co

    [16] 周志宜,有限元素耦合力場實例探討, 碩士論文,機械工程研究所,中原大學,94年。

    [17] D. C. Montgomery “Design and Analysis of Experiments 6th edition”John Wiley & Sons, 2005

    [18] 葉怡成,”實驗計劃法-製程與產品最佳化”,五南圖書出版

    [19] 毛昭陽,”以最佳等效錫球觀念修正子模型分析法進行疊晶球
    柵陣列構裝錫球可靠度之最佳化分析”國立成功大學工程科學系博士論文,2008

    [20] Y.L. Abdel-Magid and M.M.Dawoid, ”Genetic Algorithms Applications in Load Frequency Control,” Conference Publication NO.144,Genetic Algorithms in Engineering Systems: Innovations and Applications,1995.

    [21] J. H. Holland, “Adaptation in Natural and Artificial System”, Ann Arbor: The University of Michigan Press, 1975.

    [22] http://www.sci.com.tw/

    [23] Yi-Cheng Hsu “Failure Mechanisms Associated With Lens Shape of High-Power LED Modules in Aging Test”, Yu-Kuan Lin, Ming-Hung Chen, Chun-Chin Tsai, Jao-Hwa Kuang, Sheng-Bang Huang, Hung-Lieh Hu, Yeh-I Su, and Wood-Hi Cheng

    [24] R. C. Jordan, J. Beauer, and H. Oppermann, “Optimized Heat Transfer and Homogeneous Color Converting for Ultra High Brightness LED Package,” Proc. of SPIE, vol.6198, 2006.

    [25] http://www.glxpcb.com.tw/

    [26] Lianqiao Yang “Thermal Analysis of GaN-Based Light Emitting Diodes With Different Chip Sizes, ” Jianzheng Hu, Lan Kim, and Moo Whan Shin

    [27] J.P. You “Thermal Management of High Power LEDs: Impact of Die Attach Materials” Y. He and F.G. Shi Optoelectronics Packaging and Materials Labs University of California, Irvine 916 Engineering Tower Irvine, CA 92697 U.S.A.

    [28] Qian Cheng “Thermal Management of High-power White LED Package” School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China Email : cheng qianhitg 163 .com

    [29] A Suggestion for High Power LED Package Based on LTCC Jung Kyu Park*, Hyun Dong Shin**, Young Sam Park*, Sung Yeol Park*, Ki Pyo Hong*, and Byung Man Kim** : Lighting Module Team, Opto System Division, Samsung Electro-Mechanics314, Maetan3-dong, Yeongtong-gu, Suwon, Gyunggi-do, 443-743, KOREA

    [30]Thermal Management of LEDs: Package to System Mehmet Arika, Charles Beckerb, Stanton Weaverb, and James Petroskic
    General Electric Company, Global Research Center, Thermal Systems Laboratory, One Research Circle ES-102, Niskayuna, NY 12309, arik@crd.ge.com General Electric Company, Global Research Center, Micro and Nano Structures Tech. Lab, One Research Circle Bldg. KW, B1432, Niskayuna, NY 12309 GELcore, 6180 Halle Dr, Valley View, OH 44125

    [31] G. E. P. Box, J. S. Hunter, J. S. “The 2n-p Fractional Factorial Designs Part I,” Technometrics, vol.3, pp.311-352, 1961.

    下載圖示 校內:2012-10-15公開
    校外:2012-10-15公開
    QR CODE