| 研究生: |
張高華 Chang, Kao-Hua |
|---|---|
| 論文名稱: |
圓管循環彎曲負載下管面橢圓化成長及循環至皺曲圈數之研究 The Investigation of Ovalization Growth of Tube Cross-Section and the Number of Cycles to Buckling for Circular Tubes under Cyclic Bending |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 194 |
| 中文關鍵詞: | 頹毀 、橢圓化 、曲度 、曲度控制 、曲度率 、虛左k 、外直徑-厚度比 、內涵時間理論 、薄壁管 、電腦輔助工程分析 、棘齒狀 、皺曲 |
| 外文關鍵詞: | Principle of Virtual Work, Curvature-Controlled, Curvature, Ovalization, Endochronic Theory, Thin-Walled Tube, Outer Diameter-to-Thickness Ratio, Curvature Rate, Ratcheting, Buckle, Computer Add Engineering Analysis, Collapse |
| 相關次數: | 點閱:153 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對不同內/外直徑圓管於承受循環彎曲負載時,所呈現出的力學行為、皺曲損壞現象及管徑成長的變化,進行實驗與理論研究。
實驗方面:採用三種不同內/外直徑SUS316L不銹鋼圓管,在對外直徑做適度的車削以得到實驗設定的外徑/壁厚比後,進行純彎曲實驗。研究係運用"彎管試驗機"及"曲度-橢圓化量測器"來進行不同曲度控制下循環彎曲至皺曲的實驗。在訊號擷取上,利用實驗儀器上的力檢出器測得的拉力,在經過簡單計算後得到彎曲力矩值的大小,而曲度-橢圓化量測器則用來量測曲度與橢圓化的變化。同時電腦也記錄鋼管到達皺曲時的循環次數。
理論方面:採用內涵時間理論結合虛平麮z、ANSYS有限元素分析軟體與ABAQUS有限元素分析軟體,來分析圓管在循環彎曲負載時,彎矩、曲度、橢圓化的相互關係。
實驗中發現,控制曲度與循環到皺曲圈數的關係於雙對數圖中呈現互相平行的直線;而且,橢圓化的變化曲線與循環圈數的關係非常類似於單軸潛變負載的潛變應變(ε)與時間(t)的關係。因此本文分別參考Kyriakides[1]與單軸潛變Baily-Nortron公式,提出三個新的理論公式來描述相同內直徑但不同Do/t比,及不同內直徑卻有相同Do/t比之SUS316L不銹鋼圓管的控制曲度(κc)與循環到皺曲圈數(Nb)的關係及橢圓化大小(ΔDo/Do)和循環次數(N)的關係。
分析結果顯示,本文所提出的理論公式於曲度控制下,描述不同的管徑及不同的外直徑-厚度比之SUS316L不銹鋼圓管的控制曲度(κc)與循環到皺曲圈數的關係(Nb)及橢圓化大小(ΔDo/Do)和循環次數(N)的關係,有令人滿意的結果。
This study presents the mechanical behavior, buckling failure and the accumulate ovalization of the experimental and theoretical analysis on circular tubes with different inside/outside diameters subjected to cyclic bending.
For experimental aspect, three different inside/outside diameters of SUS316L stainless steel tubes were used in this study. The outside diameter of tubes was slightly machined to obtain the desired outside-diameter / wall-thickness ratio. The “tube bending machine” and “curvature-ovalization measurement apparatus” were used to conduct the curvature-controlled cyclic bending to buckling test. For signal detection, the load cells on the tube bending machine were used to measure the tube bending moment, and the inclinometers and magnetic detector on the curvature-ovalization measurement apparatus were used to measure the tube curvature and tube ovalization. Simultaneously, the number of cycles to produce buckling was also recorded.
For theoretical aspect, the Endochronic theory combined with the principle of virtual work, the finite element analysis software ANSYS and finite element analysis software ABAQUS were used to analyze the relationship among bending moment, curvature and ovalization.
On experimental results, the relationship between the ovalization and number of cycles to produce buckling on log-log scale shows similar parallel straight lines. And, the relationship between the ovalization and the number of cycles under pure bending is similar to the relationship between the creep strain and time under uniaxial creep. Therefore, the formula to refer to the Kyriakides [1] and the Baily-Nortron law for uniaxial creep was considered, two new theoretical models were proposed to simulate the ovalization and number of cycles to produce buckling (buckling failure) and the ovalization and the number of cycles under pure bending for same inner diameter on different Do/t ratio and different inner diameter on same Do/t ratio of SUS316L stainless steel tubes.
In the event, under controlled-curvature pure bending, the new theoretical models were proposed could be properly simulate the ovalization and number of cycles to produce buckling and the ovalization and the number of cycles of circular tubes of SUS316L stainless steel.
1. P. K. Shaw and S. Kyriakides, “Inelastic Analysis of Thin-Walled Tubes under Cyclic Bending”, Int. J. Solids Structure, Vol. 21, No. 11, pp.1073-1100, 1985.
2. S. Kyriakides and P. K. Shaw, “Inelastic Buckling of Tubes under Cyclic Bending”, ASME, Journal of Pressure Vessel and Technology, Vol. 109, pp. 169-178, 1987.
3. E. Cornoa and S. Kyriakides, “On the Collapse of Inelastic Tubes under Combined Bending and Pressure”, Int. J. Solids Structure, Vol. 24, No. 5, pp. 505-535, 1988.
4. E. Cornoa and S. Kyriakides, “An Experimental Investigation of the Degradation and Buckling of Circular Tubes under Cyclic Bending and External Pressure”, Thin-Walled Structures, Vol. 12, pp. 229-263, 1991.
5. W. F. Pan , and Y. S. Her, ”Viscoplastic Collapse of Thin-Walled Tubes under Cyclic Bending”, ASME, J. of Engineering Materials and Tech.,Vol.120, pp.287-290, 1998.
6. W. F. Pan and Hsu, C.M., “Viscoplastic Analysis of Thin-Walled Tubes under Cyclic Bending", Struct. Engng. Mech.-an Int. Journal, Vol.7, No.5, pp.457-471, 1999.
7. Kuo-Lee and Wen-Fung Pan, “Viscoplastic Collapse of Titanium Alloy Tubes under Cyclic Bending”, International Journal of Structural Engineering and Mechanics, Vol. 11, No. 3, pp. 315-324, 2001.
8. W.F. Pan and K.L. Lee, “The Effect of Mean Curvature on the Response and Collapse of Thin-Walled Tubes under Cyclic Bending”, JSME International Journal, Series A, Vol.45, No.2, pp.309-318, 2002.
9. K. L. Lee, W. F. Pan and J. N. Kuo, ”The Influence of the Diameter-to-Thickness Ratio on the Stability of Circular Tubes Under Cyclic Bending”, Int. J. of Solids and Structures, Vol.38, No.14, pp.2401-2413, 2001.
10. K.L. Lee and W.F. Pan, “Pure Bending Creep of SUS 304 Stainless Steel”, International Journal of steel and composite structures, Vol.2, No.6, pp.461-474, 2002.
11. K.L. Lee, W.F. Pan and Chien-Min Hsu, “Experimental and Theoretical Evaluations of Effect Between Diameter-to-Thickness Ratio and Curvature-Rate on the Stability of Circular Tubes under Cyclic Bending”, JSME International Journal, Series A, Vol.47, No.2, pp.212-222, 2004.
12. Brazier L. G., “ On the Flexure of Thin Cylindrical Shells and Other Thin Sections ” , Proceedings of the Royal Society , Series A , Vol. 116 , pp. 140-114 , 1927.
13. Stuiver, W. and Tomalin, P.F., “The Failure of Tube Under Combined External Pressure and Axial Load”, SESA Proc., Vol.16 (2), pp.39-48, 1959.
14. K.C. Valanis,“A Theory of Viscoplasticity Without a Yield Surface, Part Ⅰ: General Theory; Part Ⅱ: Application to Mechanical Behavior of Metals”, Arch. Mech., Vol.23, pp.517-551, 1971.
15. Don O. Brush and Bo O. Almroth, “Buckling of Bars, Plates, and Shells,” 虹橋, chap.4, pp.120-125, 1975.
16. Reddy, B.D., “An Experimental Study of the Plastic Buckling of Circular Cylinders in Pure Bending”, Int. J. Solids Struct., 15, 669-682, 1979.
17. Krempl, E., “An Experimental Study of Room-Temperature Sensitivity, Creep and Relaxation of AISI 304 Stainless Steel”, J. Mech. Phys. Solids, Vol.27, pp.363-375, 1979.
18. K.C. Valanis, “Fundamental Consequences of a New Intrinsic Time Measure Plasticity as a Limit of the Endochronic Theory”, Arch. Mechanics, pp. 171-191, 1980.
19. Gellin, S., “The Plastic Buckling of Long Cylindrical Shells under Pure Bending”, Int. J. Solids Struct., 16, 397-407, 1980.
20. Kujawski, D. and Krempl, E., “The Rate(Time)-Dependent Behavior of Ti7-Al2Cb1Ta Titanium Alloy at Room Temperature under Quasi-Static Monotonic and Cyclic loading”, J. Appl. Mech., ASME, Vol.48, pp.55-63, 1981.
21. Kyogoku, T., Tokimasa, K., Nakanishi, H. and Okazawa, T., “Experimental Study on the Effect of Axial Tension Load on the Collapse Strength of Oil Well Casing”, OTC 4108, pp.387-395, 1981.
22. S. Kyriakides and P. K. Shaw, “Response and Stability of Elastoplastic Circular Pipe under Combined Bending and External Pressure’’, Int. J. Solids Structure, Vol. 18, No.11, pp. 957-973, 1982.
23. Tamano, T., Mimura, H. and Yanagimoto, S., “Examination of Commerical Casing Collapse Strength under Axial Loading”, Proc. of the Offshore Mechanics/Artic Engineering/Deep Sea Systems Symposium, ASME I, pp.113-118, 1982.
24. Fan, J., “A Comprehensive Numerical Study and Experimental Verification of Endochronic Plasticity”, Ph.D. Dissertation, Department of Aerospace Engineering and Applied Mechanics, University of Cincinnati, 1983.
25. Ikegami, K. and Ni-Itsu, Y., “Experimental Evaluation of the Interaction Effect Between Plastic and Creep Deformation”, Proc. of Plasticity Today Symposium, Udline, Italy, pp.27-30, 1983.
26. H.C. Wu and R.J. Yang, “Application of the Improved Endochronic Theory of Plasticity to Loading with Multi-axial Strain-Path”, Int. J. Nonlinear Mech., Vol.18, pp.395-409, 1983.
27. K.C. Valanis and J. Fan, “Endochronic Analysis of Cyclic Elastoplastic Strain Fields in a Notched Plate”, Journal of Applied Mechanics, Vol.50, pp.789-793, 1983.
28. Beer and Johnson, ”Mechanics of Materials,”, 1985.
29. Watanabe, O. and Atluri, S.N., “A New Endochronic Approach to Computational Elasto-Plasticity: An Example of Cyclically Loaded Cracked Plate”, J. Appl. Mech., Vol.25, pp.857-864, 1985.
30. Wu, H.C., Lu, J.K. and Pan, W.F., “Endochronic equations for Finite Plastic Deformation and Application to Metal Tube under Torsion”, Int. J. Solids & Structure, Vol.32, pp.1079-1097, 1985.
31. Watanabe, O. and Atluri, S.N., “Constitutive Modeling of Cyclic Plasticity and Creep, Using an Internal Time Concept”, Int. J. Plasticity, Vol.2, pp.107-134, 1986.
32. Yeh, M.K. and Kyriakides, S., “On the Collapse of Inelastic Thick-Walled Tubes under External Pressure”, J. Energy Res. Tech., ASME, Vol.18, pp.35-47, 1986.
33. Im, S. and Atluri, S.N., “A Study of Two Finite Strain Plasticity Models: A Internal Time Theory Using Mandel’s Director Concept and a General Isotropic/Kinematic-Harding Theory”, Int. J. Plasticity, Vol.3, pp.163-191, 1987.
34. Kyriakides, S. and Yeh, M.K., “Plastic Anisotropy in Drawn Metal Tubes”, J. Engng. Ind., ASME, Vol.110, pp.303-307, 1988.
35. W. F. Chen and D. J. Han, “Plasticity for Structural Engineers”, Springer-Verlag, 1988.
36. Murakami, H. and Read, H.E., “A Second-Order Numerical Scheme for Integrating the Endochronic Plasticity Equations”, Comput. Structures, Vol.31, p.663, 1989.
37. R. K. Adair., “The Physics of Baseball”, New York, Harper & Row, 1st ed., 1990.
38. Wu, H.C., Wang, T.P., Pan, W.F. and Xu, Z.Y., “Cyclic Stress-Strain Response of Porous Aluminum”, Int. J. Plasticity, Vol.6, pp.207-230, 1990.
39. Baumel Jr. and T. Seeger, “Materials Data for Cyclic Loading - Supplement 1”, Elsevier Science Publishers B.V., 1990.
40. J. Lemaitre and Chaboche J. L. , “Mechanics of Solid Materials”, Cambridge University Press, 1990.
41. S. Kyriakides and G. T. Ju, ”Bifurcation And Localization Instabilities In Cylindrical Shells under Bending-I. Experiment”, Int. J. Solids Structures, Vol. 29, No. 9, pp. 1117-1142, 1992.
42. Ju, G. T., and Kyriakides, S., ”Bifurcation Buckling Versus Limit Load Instabilities of Elastic-Plastic Tubes under Bending and External Pressure”, Journal of Offshore Mechanics and Arctic Engineering, Vol. 113, pp. 43-52, 1992.
43. Dyau, J.Y. and Kyriakides, S., “On the Propagation Pressure of Long Cylindrical Shells under External Pressure”, Int. J., Mech. Sci., Vol. 35, pp.675-713, 1993.
44. Madhavan, R., Babcock, C.D. and Singer, J., ”On the Collapse of Long, Thin-Walled Tubes under External Pressure and Axial Tension”, J, Press. Vessel Tech., Vol.115, pp.15-26, 1993.
45. Peng, X. and Ponter, A.R.S., “External Properties of Endochronic Plasticity, Part I: External Path of the Constitutive Equation Without a Yield Surface, Part II: External Path of the Constitutive Equation With a Yield Surface and Application”, Int. J. Plasticity, Vol.9, pp.551-581, 1993.
46. Wu, H.C. and Ho, C.C., “Strain Hardening of Annealed 304 Stainless Steel by Creep”, J. Engng. Mat. Tech, ASME, Vol.117, pp.260-267, 1995.
47. C.F Lee, “Recent Finite Element Applications of the Incremental Endochronic Plasticity”, Int. J. Plasticity, Vol.11, No.7, pp.843-865, 1995.
48. B.S. Sarbayev, “An Endochronic Theory of Plastic Deformation of Fibrous Composite Materials”, Computational Materials Science, Vol.4, pp.220-232, 1995.
49. H.C. Wu, H.K. Hong and J.K. Lu, “An Endochronic Theory Accounted for Deformation Induced an Sotropy", Int. J. of Plasticity, Vol.11, No.2, pp.145-162, 1995.
50. H.C. Wu, J.K. LU and W.F. Pan,“Endochronic Equations for Finite Plastic Deformation and Application to Metal Tube under Torsion”, Int. J. Solids Structures, Vol.32, No.8/9, pp.1079-1097, 1995.
51. E. Cornoa and S.P. Vaze, ”Buckling of Elastic-Plastic Square Tubes under Bending”, Int. J. Mech. Science, Vol. 38, No. 7, pp.753-775, 1996.
52. W. F. Pan, T. H. Lee and W. C. Yeh, ”Endochronic Analysis For Finite Elasto-Plastic Deformation And Application To Metal Tube under Torsion And Metal Rectangular Block Under Biaxial Compression”, Int. J. of plasticity, Vol.12, No.10, pp.1287-1316, 1996.
53. Park, T.D. and Kyriakides, S., “On the Collapse of Denoted Cylinders under External Pressure”, Int. J. Mech. Sci., Vol.38, No.5, pp.557-578, 1996.
54. Vaze, P., and Corona, E., “Degradation and Collapse of Tube under Cyclic Bending, ” Thin Wall Structures, Vol. 31, pp. 325-341, 1996.
55. W.C. Yeh, C.D. Ho and W.F. Pan, “An Endochronic Theory Accounting for Deformation Induced Anisotropy of Metals under Biaxial Load”, Int. J. of Plasticity, Vol.12, No.8, pp.987-1004, 1996.
56. C.F. Lee, “A Simple Endochronic Transient Creep Model of Metals with Applications to Variable Temperature Creep”, Int. J. of Plasticity, Vol.12, No.2, pp.239-253, 1996.
57. S.Y. Hsu, O.H. Griffin and Jr., “Algorithmic Tangent Matrix Approach for Mixed Hardening Model of Endochronic Plasticity”, Comput. Method Appl. Mech. Engrg., Vol.133, pp.1-14, 1996.
58. W. F. Pan and K. T. Leu, “Endochronic Analysis for Viscoplastic Collapse of Thin-Walled Tube under Combined Bending and External Pressure”, JSME, Int. J., Series A, Vol. 40, No. 2, pp. 189-199, 1997.
59. W. F. Pan and C. H. Chern, “Endochronic Description of Viscoplastic Behavior of Materials under Muitiaxial Loading”, Int. J. of Solids Structures, Vol.34, No.17, pp.2131-2160, 1997.
60. Fabian, O., “Collapse of Cylindrical, Elastic Tubes under Combined Bending, Pressure and Axial Loads”, Int. J. Solids Struct., Vol.13, pp.1257-1273, 1997.
61. W. F. Pan, “Endochronic Simulation for Finite Viscoplastic Deformation”, Int. J. Plasticity, Vol.3, pp.571-586, 1997.
62. W. F. Pan, T. R. Wang and C. M. Hsu, “A Curvature-Ovalization Measurement Apparatus for Circular Tubes under Cyclic Bending”, Int. J. Experimental Mechanics, Vol. 38, No. 2, pp. 99-102, 1998.
63. W. F. Pan and C. H. Fan, “ An Experimental Study on the Effect of Curvature-Rate at Preloading Stage on Subsequent Creep or Relaxation of Thin-Walled Tubes under Pure Bending”, JSME Int. J., Series A, Vol. 41, No. 4, pp. 525-531, 1998.
64. W. F. Pan and W. J. Chiang, ”Endochronic Simulation for Multi-axial Creep”, JSME Int. J., Series A, Vol.41, No.2, pp.204-210, 1998.
65. Vaze, S. and Corona, E., “Degradation and Collapse of Square Tubes under Cyclic Bending”, Thin-Walled Structures, Vol.31, pp.325-341, 1998.
66. J. Noailles, W. Skalli, C. Tardiea, T. Siguier, and F. Lavaste, “Finite Element Geometrical and Mechanical Modeling of the Knee Joint”, Journal of Biomechanics, Vol. 31, pp.118-132, 1998.
67. M. S. Ellison and E. Corona, “Plastic Collapse Analysis of T-Beams under Bending”, Journal of Engineering Mechanics, Vol. 124. No. 8, August, 1998.
68. W.F. Pan, Y.S. Yang and J.K. Lu, “Endochronic Prediction for the Mechanical Ratcheting of a Stepped Beam Subjected to Steady and Cyclic Bending”, Structural Engineering and Mechanics, Vol.6, No.4, pp.327-337, 1998.
69. W. F. Pan, W. J. Chiang and C. K. Wang, ”Endochronic Analysis for Rate-dependent Elasto-Plastic Deformation”, Int. J. of Solids and Structures, Vol.36, pp.3215-3237, 1999.
70. 郭如男,「不同外徑/厚度比薄壁管在循環彎曲負載下皺曲行為之研究」,國立成奶j學工程科學研究所碩士論文,台南,1999。
71. H.C. Wu and H.K. Hong, “Endochronic Description of Plastic Anisotropy in Sheet Metal”, Int. J. Solids and Structures, Vol.36, pp.2735-2756, 1999.
72. W.F. Pan, C.Y. Hung and L.L. Chen, “Fatigue Life Estimation under Multiaxial Loadings”, Int. J. of Fatigue, Vol.21, pp.3-10, 1999.
73. Hsu, C.M., Chiou, S.B. and Chang, Y.S. “Inelastic Response and Stability of Titanium Alloy Tubes under Cyclic Bending,” JSME International Journal (Japan Society of Mechanical Engineers), Series A, Vol. 43, No. 1, pp. 63-68, 2000.
74. R. Muller, V. M. Poladian, I. Pavelescu, E. Manea, D. Cristae, and P. Obreja, “Techological Process and Modeling of Opto-Electromechanical Microstructures”, Materials Science in Semiconductor Processing, Vol. 3, pp.427-431, 2000.
75. Z. Hu, L. Zhu, B. Wang, Z. Liu, Y. Miao, P. Xie, S. Gu, and W. Sheng, “Computer Simulation of the Deep Extrusion of a Thin-Walled Cup Using the Thermo-Mechanically Coupled Elasto-Plastic Fem”, Journal of Materials Processing Technology, Vol. 102, pp.128-139, 2000.
76. E. Avci, “Numerical Analysis of Fracture in Ceramic Coatings Subjected to Thermal Loading”, Materials and Design, Vol. 17, pp.283-287, 2000.
77. H. Gu, A. Chattopudhyay, J. Li, and X. Zhou, “A Higher Order Temperature Theory for Coupled Thermo-Piezolectric-Mechanical Modeling of Smart Composites”, International Journal of Solids and Structures, Vol. 37, pp.6479-6497, 2000.
78. I. Akpinar, N. Anil, and L. Parnas, “A Natural Tooth’s Stress Distribution in Occlusion with a Dental Implant”, Journal of Oral Rehabilitation, Vol. 27, pp.538-545, 2000.
79. T. Johansson, P. Meier, and R. Blickhan, “A Finite-Element Model for the Mechanical Analysis of Skeletal Muscles”, Journal of Theoretical Biology, Vol. 206, pp.131-149, 2000.
80. 李國龍,”圓管在不同外徑/壁厚比及不同曲度率循環彎曲負載下皺曲行為之研究”,國立成奶j學工程科學研究所博士論文,台南,2000。
81. 洪健中,“應用內涵時間理論描述鈦合金管在循環彎曲負載下粘塑性之材料行為”,國立成奶j學碩士論文,2000。
82. H. M. Mourad and M. Y. A. Younan, “The Effect of Modeling Parameters on the Predicted Limit Loads for Pipe Bends Subjected to Out-of-Plane Moment Loading and Internal Pressure”, Journal of Pressure Vessel Technology, Vol. 122, No. 9, pp. 450-456 November, 2000.
83. Kuo-Lee, Wen-Fung Pan and Chien-Min Hsu, “Collapse of Circular Tubes under Pure Bending Creep”, Journal of Chinese Society of Mechanical Engineers, Vol. 22, No. 3, pp. 249-255, 2001.
84. L. Zhang, and G. Yang, “Design, Simulation and Testing on a Light Modulating Thermal Image Device”, Journal of Micro-engineering, Vol. 11, pp.85-93, 2001.
85. Y. S. Lee, M. H. Choi, and Y. H. Kang, “Thermal and Mechanical Characteristics of an Instrumented Capsule for a Material Irradiation Test”, Nuclear Engineering and Design, Vol. 205, pp.205-212, 2001.
86. Elchalakani, M., Zhao, X. L., Grzebieta, R.H., “ Concrete-Filled Circular Steel Tubes Subjected to Pure Bending, ” Journal of Constructional Steel Research, Vol. 57, pp.1141-1168, 2001.
87. H. M. Mourad and M. Y. A. Younan, “Nonlinear Analysis of Pipe Bends Subjected to Out-of-Plane Moment Loading and Internal Pressure”, Journal of Pressure Vessel Technology, Vol. 123, No. 16, pp. 253-258, May, 2001.
88. 黃偉豪,"可調式圓管曲度-截面變形量測器之設計與測試",國立成奶j學碩士論文,2001。
89. Elchalakani, M., Zhao, X.L. and Grzebieta, R.H., “Plastic Mechanism Analysis of Circular Tubes under Pure Bending”, Int. J. Mech. Sci., 44, pp.1117-1143, 2002.
90. 陳建和,“TF-BGA錫球接點熱應力和損壞機制之研究” ,國立成奶j學工程科學研究所碩士論文,2002。
91. A.R. Khoei, M. Mofid and A. Bakhshiani, “Modelling of powder compaction process using an endochronic plasticity model”, J. of Materials Proc. Tech., Vol.130-131, pp.175-180, 2002.
92. T. Kletschkowski, U. Schomburg and A. Bertram, “Endochronic viscoplastic material models for filled PTFE”, Mechanics of Materials, Vol.34, pp.795-808, 2002.
93. Mahmood M. Shokrieh and Davood Rezaei, “Analysis and optimization of a composite leaf spring”, Composite Structures, Vol. 60, pp. 317-325, 2003.
94. 黃顯舜,“紙管結構承載力試驗與分析”,朝陽科技大學營建工程研究所碩士論文,2003。
95. “ANSYS Users Manual”, ANSYS Inc., 2003
96. S. A. Karamanos, E. Giakoumatos, and A. M. Gresnigt, “Nonlinear Response and Failure of Steel Elbows Under In-Plane Bending and Pressure”, Journal of Pressure Vessel Technology, Vol. 125, No. 6, pp. 393-402, November, 2003.
97. Hibbit, Karlsson and Sorensen, “ABAQUS Users Manual”, A.P.I.C. Inc., 2003.
98. A. Bakhshiani, M. Mofid, A.R. Khoei and S.L. McCabe, “Finite Strain Simulation of Thin-Walled Tube under Torsion Using Endochronic Theory of Plasticity”, Thin-Walled Structures, Vol.41, pp.435-459, 2003.
99. A.R. Khoei, A. Bakhshiani and M. Mofid, “An Endochronic Plasticity Model for Finite Strain Deformation of Powder Forming Processes”, Finite Elements in Analysis and Design, Vol.40, pp.187-211, 2003.
100. Elchalakani, M., Zhao, X.L. and Grzebieta, R.H., “Concrete-Filled Circular Tubes Subjected to Constant Amplitude Cyclic Pure Bending”, Engng. Struct., 26, pp.2125-2135, 2004.
101. Jiao, H. and Zhao, X.L., “Section Slenderness Limits of Very High Strength Circular Steel Tubes in Bending”, Thin-Walled Struct., 42, 1257-1271, 2004.
102. K.L. Lee, W.F. Pan and C.M. Hsu, “Experimental and Theoretical Evaluations of the Effect Between Diameter-to-Thickness Ratio and Curvature-Rate on the Stability of Circular Tubes under Cyclic Bending”, JSME International Journal, Vol.47, No.2, pp. 212-222, 2004.
103. 陪齛a,“316L不鋼管在循環彎曲負載下黏塑性力學行為及皺曲損壞之理論分析”,國立成奶j學碩士論文,2004。
104. 鄭惟心,“全人工髖關節中超高分子聚乙烯元件之應力分佈:以有限元素法分析與臨床磨耗位置之比較”,長庚大學機械工程研究所碩士論文,2004。
105. 溫從凱,“利用G/L方法探討WLCSP構裝含UBM錫球之疲勞壽命”, 國立成奶j學工程科學研究所碩士論文, 2004。
106. 徐建民、郭如男及潘文峰,”316L不銹鋼管在循環彎曲負載下行為之實驗分析”,技術學刊,第二十卷,第一期,pp. 1-6, 2005。
107. 林慶原,“7005-T53鋁合金管在循環彎曲負載下彈塑性力學行為及皺曲損壞之研究”,國立成奶j學碩士論文,2005。
108. 李輝煌, “ANSYS 工程分析基礎與觀念” ,高立圖書, 2005。
109. Ramezanali Mahdavinejad, “Finite Element Analysis of Machine and Workpiece Instability in Turning”, International Journal of Machine Tools and Manufacture, Vol. 45, pp. 753-760, 2005.
110. Zefeng Wen, Xuesong Jin and Weihua Zhang, “Contact-Impact Stress Analysis of Rail Joint Region Using the Dynamic Finite Element Method”, Wear, Vol. 258, pp. 1301-1309, 2005.
111. Min-Xin Zhou, Qing-An Huang and Ming Qin, “Modeling, Design and Fabrication of a Triple-Layered Capacitive Pressure Sensor”, Sensors and Actuators A:Physical, Vol. 117, pp. 71-81, 2005.
112. Mir Majid Teymoori and Ebrahim Abbaspour-Sani, “Design and Simulation of a Novel Electrostatic Peristaltic Micromachined Pump for Drug Delivery Application”, Sensors and Actuators A:Physical, Vol. 117, pp. 222-229, 2005.
113. 張嘉興,鋼管混凝土柱受軸壓及雙向彎矩載重之非線性分析,國立成奶j學碩士論文,2005。
114. 愛發股份有限公司,ABAQUS實務入門指導,全華科技圖書股份有限公司,2005。
115. 莊茁,"ABAQUS非性有限元分析与例",科學出版社,北京,2005。
116. 陳信嘉,2006,”不同內直徑及外直徑SUS 304不銹鋼管在循環彎曲負載下力學行為及皺曲損壞之實驗分析”,國立成奶j學工程科學研究所碩士論文,台南。
117. 林文凱,2006,”不同外徑/ 壁厚比316L不銹鋼管在循環彎曲負載下力學行為及皺曲損壞之實驗分析”,國立成奶j學工程科學研究所碩士論文,台南。
118. 康淵,陳信吉, “ANSYS入門”,全華圖書, 2006。
119. 石亦平,周玉蓉, ”ABAQUS有限元分析實例詳解”, 機械工業出版社,北京,2006。
120. 趙騰倫,"ABAQUS 6.6在機械工程中的應用",中國水利水電出版社,北京,2007。
121. "ABAQUS進階動力學,全華科技圖書股份有限公司,2007。
122. Kao-Hua Chang, Kuo-Long Lee and Wen-Fung Pan, ”Experimental Analysis on the Mechanical Behavior and Buckling Failure of SUS304 Stainless Steel Tubes with Different Outside and Inside Diameters under Cyclic Bending”, Journal of Technology, 2008
123. Kao-Hua Chang, Wen-Fung Pan and Kuo-Long Lee, “Mean Moment Effect of Thin-Walled Tubes under Cyclic Bending”, Structural Engineering and Mechanics, Vol. 28, No. 5, pp. 495-514, 2008
124. Kao-Hua Chang, Kuo-Long Lee and Wen-Fung Pan, ”Experimental Analysis on the Mechanical Behavior and Buckling Failure of SUS304 Stainless Steel Tubes with Different Outside and Inside Diameters under Cyclic Bending”, Journal of Technology, 2007
125. W. F. Chen and D. J. Han, “Plasticity for Structural Engineers”, Springer-Verlag, 1991
126. Kyriakides, S., Corona, E., “Mechanics of offshore pipelines, Volume 1: Buckling and Collapse”, Chapter 8 and 9, Elsevier, 2007