| 研究生: |
鍾易呈 Chung, Yi-Cheng |
|---|---|
| 論文名稱: |
結合啟發式演算法及排序與選擇程序解決CNC機器隨機預防維修排程問題 Combining Heuristic Algorithm with Ranking and Selection Procedure to Solve Stochastic Preventive Maintenance Scheduling Problem on a CNC Machine |
| 指導教授: |
蔡青志
Tsai, Ching-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 模擬最佳化 、啟發式演算法 、預防維修 、隨機排程 |
| 外文關鍵詞: | Optimization via simulation, Heuristic Algorithm, Preventive Maintenance, Stochastic Scheduling |
| 相關次數: | 點閱:96 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的是解決CNC機器之預防維修排程問題(Preventive Maintenance),預防維修問題則是在機器排定各項工作行程之時,插入預先維修的行程以降低機器設備損壞所造成的額外維修成本,目標則是要求出擁有最短完成時間的排程最佳解或近似最佳解,而解是由以下三項決策變數所組成。
1.機器速率
2.工作排程(Scheduling)
3.預先維修排程(Preventive Maintenance decisions)
機器速率為可調整參數,速率越高使機器刀具負擔更大,損壞機率也因此提高,也就更需要排定預防維修以降低刀具損壞機率。
工作時間、損壞機率、機器刀具修復時間及工作準備時間為隨機,不適用一般統計數學方法求解,所以本研究採用模擬最佳化(Optimization via Simulation)之方式求解,結合修改至適合隨機問題的基因演算法(GA)及模擬退火法(SA),並利用排序與選擇程序(Ranking and Selection; R&S)來決定其中之最佳解。
最後在實驗過程可以觀察到,加入R&S不論是在GA或是GA+SA上均可以有效提升最佳解之品質優良及穩定程度,而在面對啟發式演算法需跑多次世代求解,也就是問題複雜度較高的情況下,加入R&S對於降低樣本數及花費時間上也有著顯著的效果。但本研究尚未加入變異數減免技術來減少樣本數的使用及提昇效率,而針對問題也只為簡單的單機排程問題,所以此兩項為未來可修改發展的方向。
The purpose of this study is to solve the Preventive Maintenance(PM) scheduling problem on a CNC machine. The machine breaks down will have additional cost to repair it and insert a PM can decrease the cost.Our purpose is to find the best solution that is defined by the shortest total completion time. Each solution is characterized by different machine rate ,scheduling and PM decisions.Higher machine rate will have higher probability to break down so we need insert a PM to decrease the probability.
In our research , the work process time , probability of break down , Repair time and setup time are stochastic variables so we use Optimization via Simulation to solve this problem. So I combine the Modified Heuristic algorithm with Ranking and Selection(R&S) to find the best solution.
Finally , we found combining the R&S with GA or GA + SA can improve and Stabilize the quality of the best solution. When Facing the situation of complicated problems , heuristic algorithms have to run more generation to decide the best solution.It may cost many samples and time , but combing R&S can decrease the samples and time. We can apply VRT on the procedure to decrease the samples and time or use this procedure on more complicated problems in the future.
Akturk, M. S. and Gurel, S. (2007) Machining
conditions-based preventive maintenance. International Journal
of Production Research, 45, 1725-1743.
Allaoui, H. and Artiba, A. (2004) Integrating simulation and
optimization to schedule a hybrid flow shop with maintenance
constraints. Computers & Industrial Engineering,
47, 431-450.
Barlow, R. and Hunter, L. (1960) Optimum preventive maintenance policies. Operations
Research, 8, 90-100.
Barlow, R. and Proschan, F. (1965) Mathematical Theory of Reliability, NewYork.
Bechhofer, R. E. (1954) A single-sample multiple decision procedure for ranking means of normal populations with known variances. Annals of Mathematical Statistics, 25, 16-39.
Berg, M. and Epstein, B. (2006) A modified block replacement policy. Naval Research Logistics Quarterly, 23, 15-24.
Bergman, B. (1978) Optimal Replacement under a General Failure
Model. Advances in Applied Probability, 10, 431-451.
Block, H. W. , Langberg, N. A. and Savits, T. H. (1993) Repair Replacement Policies. Journal of Applied Probability 30, 194-206.
Boesel, J. , Nelson, B. L. and Ishii, N. (2003) A Framework for Simulation-Optimization Software. IIE Transactions, 35, 221-230.
Boesel, J. , Nelson, B. L. and Kim Seong Hee (2003) Using Ranking and Selection to "Clean up" after Simulation Optimization. Operations Research, 51, 814-825.
Calinski, T. and Corsten, L. C. A. (1985) Clustering means in ANOVA by simultaneous testing. Biometrics, 41, 39-48.
Chan, J. K. and Shaw, L. (1993) Modeling Repairable Systems with Failure Rates that Depend on Age & Maintenance. IEEE Transactions On Reliability, 42, 566-571.
Gendreau, M. , Laporte, G. and Seguin, R. (1996) A Tabu Search Heuristic for the Vehicle Routing Problem with Stochastic Demands and Customers. Operations Research, 44, 469-477.
Glover, F. (1989) Tabu Search — Part I. ORSA Journal on Computing, 1, 190-206.
Goldberg, D. E. (1989) Genetic algorithms in search, optimization and machine learning, Reading, MA: Addison Wesley.
Groover, M. P. (2002) Fundamentals of modern manufacturing :materials, processes, and systems.Wiley:NY.
Gupta, S. S. (1956) On a decision rule for a problem in ranking means. Doctoral dissertation, Institute of Statistics, Univ. of North Carolina, Chapel Hill, NC.
Gurel, S. and Akturk, M. S. (2008) Scheduling
Preventive Maintenance on a Single CNC Machine. International
Journal of Production Research, 46, 6797-6821.
Holland, J. H. (1975) Adaptation in natural and artificial systems, Ann Arbor,MI: The University of Michigan Press.
Kim, S. H. and Nelson, B. L. (2005) Selecting the Best System,Chapter 17 in
Elsevier Handbooks in Operations Research and Management Science:
Simulation , Elsevier, forthcoming.
Kirkpatrick S. et. al (1983).Optimization by simulated annealing. Science, 220, 671-80.
Lie, C. H. and Chun, Y. H. (1986) An Algorithm for Preventive Maintenance Policy. IEEE Transactions On Reliability, 35, 71-75.
Liu, X. G. , Viliam, M. and Andrew, K. S. Jardine. (2006) A replacement model
with overhauls and repairs. Naval Research Logistics,
42, 1063-1079.
Love, C. E. and Guo, R. (1996) Utilizing Weibull Failure Rates in Repair Limit Analysis for Equipment Replacement/Preventive Maintenance Decisions. The Journal of the Operational Research Society, 47, 1366-1376.
McCal, l. J. J. (1963) Operating Characteristics of Opportunistic Replacement
and Inspection Policies. Management Science, 10,
85-97.
Nakagawa, T. (1981a) A summary of periodic replacement with minimal repair at failure. Journal of the Operations Research Society of Japan,24, 213-228.
Nakagawa, T. (1981b) Modified periodic replacement with minimal repair at failure. IEEE Transactions on Reliability, 30, 165-168.
Nakagawa, T. (1984) Optimal policy of continuous and discrete replacement with minimal repair at failure. Naval Research Logistics Quarterly}, 31, 543-550.
Nakagawa, T. (1986) Periodic and Sequential Preventive Maintenance Policies. Journal of Applied Probability, 23, 536-542.
Nelson, B. L. , Swann, J. , Goldsman, D. and Song, W. (2001) Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives Is Large. Operations Research, 49, 950-963.
Nguyen, D. G. and Murthy, D. N. P. (1981) Optimal Preventive Maintenance Policies for Repairable Systems. Operations Research, 29, 1181-1194.
Panagiotidoua, S. and Tagaras, G. (2007) Optimal preventive maintenance for equipment with two quality states and general failure time distributions. European Journal of Operational Research, 180, 329-353.
Pham, H. and Wang, H. (1996) Imperfect maintenance.European Journal
of Operational Research, 94, 425-438.
Prudius, A. A. and Andradottir, S. (2005) Two Simulated Annealing Algorithm For Noisy Objective Functions. Proceedings of the 2005 Winter Simulation Conference.
Prudius, A. A. (2007) Adaptive Random Search Methods For Simulation Optimizaton. In Partial Fulfillment
of the Requirements for the Degree Doctor of Philosophy in the H.
Milton Stewart School of Industrial and Systems Engineering ,
Georgia Institute of Technology.
Rinott, Y. (1978) On Two-Stage Selection Procedures and Related Probability-Inequalities. Communications in Statistics - Theory and Methods, 7, 799-811.
Sherif, Y. S. and Smith, M. L. (1981) Optimal Maintenance Models For Systems Subject to Failure-A Review. Naval Research Logistics Quarterly,28, 47-74.
Sheu, S. H. , Kuo, C. M. and Nakagawa, T. (1993) Extended Optimal Age Replacement Policy with Minimal Repair.RAIRO. Recherche operationnelle, 27, 337-351.
Sheu, S. H. , Griffith, W. S. and Nakagawa, T. (1995) Extended
Optimal Replacement Model with Random Minimal Repair Costs.
European Journal of Operational Research, 85,
636-649.
Tango, T. (1978) Extended block replacement policy with used items. Journal of Applied Probability, 15, 560-572.
Tahara, A. and Nishida, T. (1974) Optimal replacement policy for minimal repair model. Journal of the Operations Research Society of
Japan, 18, 497-513.
Wang, H. and Pham H. (1999) Some maintenance models and availability with imperfect maintenance in production systems. Annals of Operations Research, 91, 305-318.
Wang, H. (2002) A survey of maintenance policies of deteriorating
systems.European Journal of Operational Research,
139, 469-489.
Wang, L. and Zheng, D. Z.(2001)An effective hybrid
optimization strategy for job-shop scheduling problems.
Computer and Operations Research, 28, 585-596.
校內:2020-12-31公開