| 研究生: |
王宏銘 Wang, Hong-Ming |
|---|---|
| 論文名稱: |
基於深度學習探索雙量子位元態操縱性量測設置的層次結構 Exploring the hierarchy of steering measurement setting of two-qubit states via deep learning |
| 指導教授: |
陳宏斌
Chen, Hong-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 量子資訊 、EPR操縱性 、測量設定 、半正定規劃 、深度學習 |
| 外文關鍵詞: | Quantum information, EPR steering, Measurement setting, Semidefinite programming, Deep learning |
| 相關次數: | 點閱:99 下載:26 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,EPR 操縱性在量子資訊中已經引起越來越多的研究興趣. 儘管已經
提出了許多量子操縱性標準,但對於任意的兩個量子位元狀態, 想要評估可操
縱性的程度仍然相當困難。另一方面,隨著人工智慧技術快速的發展,人們可
以利用它的能力識別大量數據中的隱藏模式來解決複雜的物理問題。在這裡我
們使用深度學習的模型來探索量子操縱性測量設定的層次結構。這邊設計了預
先過濾器和半正定規劃迭代來生成訓練資料集的標籤。我們應用訓練好的深度
學習模型來分析三種不同類型的特殊量子態和隨機量子態,同時預測量子操縱
性測量設定的層次結構和可操縱性與不可操縱性之間的邊界。此外,我們還將
密度矩陣轉換五種不同的特徵,並使用這些不同特徵訓練模型來比較性能。而
我們的結果也進一步深入了解了量子操縱性的層次結構。
In recent years, EPR steering has attracted increasing research interest in the
community of quantum information. Although numerous quantum steering criteria have been proposed, it remains quite difficult to assess the degree of steerability even for an arbitrary two-qubit state. On the other hand, with the extensive development of the technology of artificial intelligence, people have harnessed its capability in the recognition of hidden pattern within a huge amount of data to solve complex physical problems. Here we leverage the power of the deep learning model to explore the hierarchy of steering measurement setting. A pre-filter and semidefinite programming iteration procedure is designed to generate the labelled training data set. We apply the well-trained deep learning model to analyze three different types of specific quantum states and random quantum states, meanwhile predicting the hierarchy of steering measurement setting and the boundary between steerability and unsteerability. In addition, we also encode the density matrices into five different features and compare the performance of the models trained with the different features. Our results provide further insight into the the hierarchical structure of quantum steering.
[1] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[2] E. Schrödinger, “Discussion of probability relations between separated systems,” in Math. Proc. Camb. Phil. Soc., Vol. 31 (1935) pp. 555–563.
[3] J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[4] J. S. Bell, “On the einstein podolsky rosen paradox,” Physics 1, 195 (1964).
[5] S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938 (1972).
[6] A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via bell’s theorem,” Phys. Rev. Lett. 47, 460 (1981).
[7] A. Aspect, P. Grangier, and G. Roger, “Experimental realization of einsteinpodolsky-rosen-bohm gedankenexperiment: A new violation of bell’s inequalities,”Phys. Rev. Lett. 49, 91 (1982).
[8] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg,
R. F. Vermeulen, R. N. Schouten, C. Abellán, et al., “Loophole-free bell inequality
violation using electron spins separated by 1.3 kilometres,” Nature 526, 682 (2015).
[9] M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellán, W. Amaya,
V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W.
Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, “Significant-loopholefree test of bell’s theorem with entangled photons,” Phys. Rev. Lett. 115, 250401
(2015).
[10] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J.
Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D.Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall,
Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán,
W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang,
R. P. Mirin, E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,”
Phys. Rev. Lett. 115, 250402 (2015).
[11] D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a review with focus on
semidefinite programming,” Rep. Prog. Phys. 80, 024001 (2017).
[12] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” Rev. Mod. Phys. 92, 015001 (2020).
[13] H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the einstein-podolsky-rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[14] M. F. Pusey, “Negativity and steering: A stronger peres conjecture,” Phys. Rev. A 88, 032313 (2013).
[15] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[16] O. Gühne and G. Tóth, “Entanglement detection,” Phys. Rep. 474, 1 (2009).
[17] P. Horodecki, “Separability criterion and inseparable mixed states with positive partial transposition,” Phys. Lett. A 232, 333 (1997).
[18] A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413 (1996).
[19] R. Akita, A. Yoshihara, T. Matsubara, and K. Uehara, “Deep learning for stock
prediction using numerical and textual information,” Proc. IEEE/ACIS 15th Int.
Conf. Comput. Inf. Sci. (2016), 10.1109/ICIS.2016.7550882.
[20] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time series forecasting with deep learning : A systematic literature review: 2005-2019,” Appl. Soft Comput. 90, 106181 (2020).
[21] J. Kim, H. Zeng, D. Ghadiyaram, S. Lee, L. Zhang, and A. C. Bovik, “Deep
convolutional neural models for picture-quality prediction: Challenges and solutions to data-driven image quality assessment,” IEEE Signal Processing Magazine 34, 130 (2017).
[22] H. Zhang, L. Li, K. Qiao, L. Wang, B. Yan, L. Li, and G. Hu, “Image prediction
for limited-angle tomography via deep learning with convolutional neural network,” arXiv:1607.08707 (2016).
[23] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network learning for speech recognition and related applications: an overview,” Proc. IEEE Int. Conf. Acoust. (2013), 10.1109/ICASSP.2013.6639344.
[24] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech recognition
using deep neural networks: A systematic review,” IEEE Access 7, 19143 (2019).
[25] S. Oh, J. Choi, and J. Kim, “A tutorial on quantum convolutional neural
networks (qcnn),” Proc. Int. Conf. Inf. Commun. Technol. Converg. (2020),
10.1109/ICTC49870.2020.9289439.
[26] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Phys. Rev. Lett. 113, 130503 (2014).
[27] D. Dong, C. Chen, H. Li, and T.-J. Tarn, “Quantum reinforcement learning,” IEEE Trans. Syst., Man, B, Cybern. 38, 1207 (2008).
[28] T. Kriváchy, Y. Cai, D. Cavalcanti, A. Tavakoli, N. Gisin, and N. Brunner, “A neural
network oracle for quantum nonlocality problems in networks,” npj Quantum Inf.
6, 70 (2020).
[29] S. Lu, S. Huang, K. Li, J. Li, J. Chen, D. Lu, Z. Ji, Y. Shen, D. Zhou, and B. Zeng,
“Separability-entanglement classifier via machine learning,” Phys. Rev. A 98, 012315 (2018).
[30] C. Ren and C. Chen, “Steerability detection of an arbitrary two-qubit state via
machine learning,” Phys. Rev. A 100, 022314 (2019).
[31] Y.-C. Ma and M.-H. Yung, “Transforming bell’s inequalities into state classifiers with machine learning,” npj Quantum Inf. 4, 34 (2018).
[32] A. Jain, J. Mao, and K. Mohiuddin, “Artificial neural networks: a tutorial,” Computer 29, 31 (1996).
[33] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull. Math. Biophys. 5, 115 (1943).
[34] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain.” Psychol. Rev. 65, 386 (1958).
[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning on
heterogeneous systems,” arXiv:1603.04467 (2016).
[36] F. C. Keras, “Keras github repository,” https://github.com/keras-team/keras,
(2015).
[37] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J. Er,
W. Ding, and C.-T. Lin, “A review of clustering techniques and developments,”
Neurocomputing 267, 664 (2017).
[38] L. Van Der Maaten, E. Postma, J. Van den Herik, et al., “Dimensionality reduction: a comparative,” J. Mach. Learn. Res. 10, 13 (2009).
[39] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm,” J. R. Stat. Soc. Ser. C (Appl. Stat.) 28, 100 (1979).
[40] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent
developments,” Philos. Trans. R. Soc., A 374, 20150202 (2016).
[41] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised learning,” Mach. Learn. 109, 373 (2020).
[42] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A
survey,” J. Artif. Intell. Res. 4, 237 (1996).
[43] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental
criteria for steering and the einstein-podolsky-rosen paradox,” Phys. Rev. A 80,
032112 (2009).
[44] A. C. S. Costa and R. M. Angelo, “Quantification of einstein-podolsky-rosen steering for two-qubit states,” Phys. Rev. A 93, 020103 (2016).
[45] C.-Y. Hsieh, Y.-C. Liang, and R.-K. Lee, “Quantum steerability: Characterization, quantification, superactivation, and unbounded amplification,” Phys. Rev. A 94, 062120 (2016).
[46] M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of einstein-podolsky-rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
[47] P. Skrzypczyk, M. Navascués, and D. Cavalcanti, “Quantifying einstein-podolskyrosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[48] F. Hirsch, M. T. Quintino, T. Vértesi, M. Navascués, and N. Brunner, “Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant KG(3),” Quantum 1, 3 (2017).
[49] J. Bowles, F. Hirsch, M. T. Quintino, and N. Brunner, “Sufficient criterion for
guaranteeing that a two-qubit state is unsteerable,” Phys. Rev. A 93, 022121 (2016).
[50] M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acín,
and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for
general measurements,” Phys. Rev. A 92, 032107 (2015).
[51] R. Gallego and L. Aolita, “Resource theory of steering,” Phys. Rev. X 5, 041008 (2015).
[52] S. Jevtic, M. Pusey, D. Jennings, and T. Rudolph, “Quantum steering ellipsoids,”
Phys. Rev. Lett. 113, 020402 (2014).
[53] A. Milne, D. Jennings, S. Jevtic, and T. Rudolph, “Quantum correlations of twoqubit states with one maximally mixed marginal,” Phys. Rev. A 90, 024302 (2014).
[54] D. Li, X. Li, H. Huang, and X. Li, “Stochastic local operations and classical communication invariant and the residual entanglement for n qubits,” Phys. Rev. A 76, 032304 (2007).
[55] S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008).
[56] K. Jiráková, A. Černoch, K. Lemr, K. Bartkiewicz, and A. Miranowicz, “Experimental hierarchy and optimal robustness of quantum correlations of two-qubit states with controllable white noise,” Phys. Rev. A 104, 062436 (2021).
[57] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for training deep neural networks with noisy labels,” arXiv:1805.07836 (2018).
[58] S. Mirjalili, “How effective is the grey wolf optimizer in training multi-layer perceptrons,” Applied Intelligence 43, 150 (2015).
[59] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436 (2015).
[60] Y. Ito, “Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory,” Neural Networks 4, 385 (1991).
[61] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv:1803.08375 (2018).
[62] X. Zhang, Y. Zou, and W. Shi, “Dilated convolution neural network with leakyrelu for environmental sound classification,” in Proc. 22nd Int. Conf. Digit. Signal Process. , 1 (2017).
[63] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature 323, 533 (1986).
[64] “Randomdensitymatrix of qetlab,”https://qetlab.com/RandomDensityMatrix.
[65] R. Horodecki and M. Horodecki, “Information-theoretic aspects of inseparability of mixed states,” Phys. Rev. A 54, 1838 (1996).
[66] S. Jevtic, M. J. W. Hall, M. R. Anderson, M. Zwierz, and H. M. Wiseman,
“Einstein–podolsky–rosen steering and the steering ellipsoid,” J. Opt. Soc. Am. B
32, A40 (2015).
[67] Y.-Y. Zhao, H.-Y. Ku, S.-L. Chen, H.-B. Chen, F. Nori, G.-Y. Xiang, C.-F. Li,
G.-C. Guo, and Y.-N. Chen, “Experimental demonstration of measurement-deviceindependent measure of quantum steering,” npj Quantum Inf. 6, 77 (2020).