| 研究生: |
陳宏宇 Chen, Hong-Yu |
|---|---|
| 論文名稱: |
氮化鎵系蕭特基接觸式氫氣感測器之研製 Fabrication of GaN-Based Schottky Contact-Type Hydrogen Sensors |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 奈米粒子 、鈀 、鉑 、過氧化氫 、氫氣感測器 、雙金屬 、二氧化矽奈米球 、粗糙度 |
| 外文關鍵詞: | bimetallic catalysts, Pt, Pd, nanoparticle (NP), GaOX dielectric, hydrogen sensor, SiO2 NS, roughness |
| 相關次數: | 點閱:60 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於此篇論文中,主要研究以氮化鎵/氮化鋁鎵/氮化鎵結構研製蕭特基式氫氣感測器,由於氮化鎵及氮化鋁鎵與砷化鎵、矽材料等相比有著較寬的能隙,且物理、化學性質、熱穩定性也是其特點,而接面處所存在的二維電子氣(2-DEG)更使氮化鎵/氮化鋁鎵/氮化鎵基底的感測器有著良好的感測能力。並在蕭特基感測區之下以過氧化氫表面氧化處理的方式生成自然氧化層,此氧化層能夠有效的降低元件於空氣中的穩態電流及逆偏電流,使得感測特性獲得改善。
而在催化金屬(鈀、鉑)方面上利用快速蒸鍍法製造鉑、鈀奈米粒子在相反金屬薄膜上以形成雙金屬結構。結果顯示修飾後以奈米粒子的雙金屬結構蕭特基氣體感測器在氫氣之反應響應及速度皆有大幅提升。此方法提升了單一金屬粗糙度不足的問題,利用與之相反的金屬做修飾提升溢出效應。
最後章節則利用快速對流沉積法(RCD)塗上二氧化矽奈米球,於此之上再蒸鍍上一層鈀薄膜,利用兩層修飾的方式大幅增加表面粗糙度及吸附座,增加元件的吸附力。且也附上單修飾二氧化矽奈米球之感測特性確保不會阻擋氫氣的進出且能增加溢出效應的功能。自然氧化層、雙金屬結構跟二氧化矽奈米球等修飾方法使漏電流降低、吸附座增加、粗糙度提升皆有利於元件的感測響應、速度等效果。
In this thesis, the main research is to develop a Schottky hydrogen sensor with a GaN-based structure, and the native oxide layer by surface treatment on the Schottky sensing region. In addition, platinum and palladium nanoparticles are produced by a rapid and proper vacuum thermal evaporation (VTE) approach method on a catalytic metal (palladium, platinum) film to form a bimetallic structure. The results show that the Schottky gas sensor with nanoparticle structure has a significant promotion in the response and response(recovery) time of hydrogen.
Compared with other materials (e.g. GaAs, Si), GaN (AlGaN) series material have a wide band gap, high temperature stability, and physical, chemical stability. Furthermore, the GaN/AlGaN heterojunction has a two-dimensional electron gas (2-DEG). Therefore, those gas sensors perform excellent sensing capabilities and a wide operating temperature.
The nanoparticle is fabricated by rapid evaporation to form a bimetallic structure. This method can rapidly fabricate the Schottky contact surface and reduce the number of process steps. Furthermore, in terms of sensing characteristics, the addition of the nanoparticle structure enhances the roughness, surface-volume ratio, and reduces the energy, which is required for adsorption in gas sensing. The SiO2 nanosphere (NS) and Pd nanoparticles also provide the same benefit to improve roughness and adsorption capacity Moreover, the surface treatment of hydrogen peroxide (H2O2) forms a native oxide layer (GaOX), which can significantly decrease the reverse bias leakage current of the device and apply more the adsorption site to achieve the effect of improved sensing characteristics.
[1] Y. Wang, B. Liu, S. Xiao, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li, and T. Wang, "High performance and negative temperature coefficient of low temperature hydrogen gas sensors using palladium decorated tungsten oxide," Journal of Materials Chemistry A, vol. 3, pp. 1317-1324, 2015.
[2] S.K. Arya, S. Krishnan, H. Silva, S. Jean, and S. Bhansali, "Advances in materials for room temperature hydrogen sensors," Analyst, vol. 137, pp. 2743-2756, 2012.
[3] B. Johnston, M.C. Mayo, and A. Khare, "Hydrogen: the energy source for the 21st century," Technovation, vol. 25, pp. 569-585, 2005.
[4] N.H. Al-Hardan, M.J. Abdullah, and A.A. Aziz, "Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films," International Journal of Hydrogen Energy, vol. 35, pp. 4428-4434, 2010.
[5] M.Z. Ahmad, V.B. Golovko, R.H. Adnan, F. Abu Bakar, J.-Y. Ruzicka, D.P. Anderson, G.G. Andersson, and W. Wlodarski, "Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films," International Journal of Hydrogen Energy, vol. 38, pp. 12865-12877, 2013.
[6] H.-Y. Nie, and Y. Nannichi, "Pd-on-GaAs Schottky contact: its barrier height and response to hydrogen," Japanese journal of applied physics, vol. 30, pp. 906, 1991.
[7] S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, "Distributed hydrogen determination with fiber-optic sensor," Sensors and Actuators B: Chemical, vol. 108, pp. 508-514, 2005.
[8] R. Boll, K.J. Overshott, W. Göpel, J. Hesse, and J. Zemel, Sensors, Magnetic Sensors: John Wiley & Sons; 2008.
[9] A. Mandelis, and C. Christofides, Physics, chemistry and technology of solid state gas sensor devices: John Wiley & Sons; 1993.
[10] P. Childs, J. Greenwood, and C. Long, "Review of temperature measurement," Review of scientific instruments, vol. 71, pp. 2959-2978, 2000.
[11] O. Varghese, P. Kichambre, D. Gong, K. Ong, E. Dickey, and C. Grimes, "Gas sensing characteristics of multi-wall carbon nanotubes," Sensors and Actuators B: Chemical, vol. 81, pp. 32-41, 2001.
[12] E. Snow, F. Perkins, E. Houser, S. Badescu, and T. Reinecke, "Chemical detection with a single-walled carbon nanotube capacitor," Science, vol. 307, pp. 1942-1945, 2005.
[13] Y. Joseph, B. Guse, A. Yasuda, and T. Vossmeyer, "Chemiresistor coatings from Pt-and Au-nanoparticle/nonanedithiol films: sensitivity to gases and solvent vapors," Sensors and Actuators B: Chemical, vol. 98, pp. 188-195, 2004.
[14] K.-C. Ho, and Y.-H. Tsou, "Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films," Sensors and Actuators B: Chemical, vol. 77, pp. 253-259, 2001.
[15] R.R. Reston, and E. Kolesar, "Silicon-micromachined gas chromatography system used to separate and detect ammonia and nitrogen dioxide. I. Design, fabrication, and integration of the gas chromatography system," Journal of Microelectromechanical Systems, vol. 3, pp. 134-146, 1994.
[16] V.V. Sysoev, B.K. Button, K. Wepsiec, S. Dmitriev, and A. Kolmakov, "Toward the nanoscopic “electronic nose”: Hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano-and mesowire sensors," Nano letters, vol. 6, pp. 1584-1588, 2006.
[17] J.K. Abraham, B. Philip, A. Witchurch, V.K. Varadan, and C.C. Reddy, "A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor," Smart Materials and Structures, vol. 13, pp. 1045, 2004.
[18] N. Barsan, D. Koziej, and U. Weimar, "Metal oxide-based gas sensor research: How to?," Sensors and Actuators B: Chemical, vol. 121, pp. 18-35, 2007.
[19] G. Korotcenkov, "The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors," Materials Science and Engineering: R: Reports, vol. 61, pp. 1-39, 2008.
[20] S. Semancik, R.E. Cavicchi, M. Wheeler, J. Tiffany, G. Poirier, R. Walton, J.S. Suehle, B. Panchapakesan, and D. DeVoe, "Microhotplate platforms for chemical sensor research," Sensors and Actuators B: Chemical, vol. 77, pp. 579-591, 2001.
[21] G. Korotcenkov, "Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches," Sensors and Actuators B: Chemical, vol. 107, pp. 209-232, 2005.
[22] U. Lange, N.V. Roznyatovskaya, and V.M. Mirsky, "Conducting polymers in chemical sensors and arrays," Analytica chimica acta, vol. 614, pp. 1-26, 2008.
[23] J. Stetter, and K. Blurton, "Selective Oxidation of Hydrogen in Carbon Monoxide/Air Streams. Application to Environmental Monitoring," Industrial & Engineering Chemistry Product Research and Development, vol. 16, pp. 22-25, 1977.
[24] J. Stetter, and K. Blurton, "Portable high‐temperature catalytic reactor: Application to air pollution monitoring instrumentation," Review of Scientific Instruments, vol. 47, pp. 691-694, 1976.
[25] M. Holzinger, J. Maier, and W. Sitte, "Fast CO2-selective potentiometric sensor with open reference electrode," Solid State Ionics, vol. 86, pp. 1055-1062, 1996.
[26] J. Růz̆ic̆ka, and E. Hansen, "A new potentiometric gas sensor-the air-gap electrode," Analytica Chimica Acta, vol. 69, pp. 129-141, 1974.
[27] N. Miura, G. Lu, and N. Yamazoe, "High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode," Sensors and Actuators B: Chemical, vol. 52, pp. 169-178, 1998.
[28] A. Azad, S. Akbar, S. Mhaisalkar, L. Birkefeld, and K. Goto, "Solid‐state gas sensors: A review," Journal of the Electrochemical Society, vol. 139, pp. 3690-3704, 1992.
[29] T. Maruyama, S. Sasaki, and Y. Saito, "Potentiometric gas sensor for carbon dioxide using solid electrolytes," Solid State Ionics, vol. 23, pp. 107-112, 1987.
[30] M. Holzinger, J. Maier, and W. Sitte, "Potentiometric detection of complex gases: application to CO2," Solid State Ionics, vol. 94, pp. 217-225, 1997.
[31] N. Yamazoe, and N. Miura, "Potentiometric gas sensors for oxidic gases," Journal of electroceramics, vol. 2, pp. 243-255, 1998.
[32] B. Luther, S. Wolter, and S.E. Mohney, "High temperature Pt Schottky diode gas sensors on n-type GaN," Sensors and Actuators B: Chemical, vol. 56, pp. 164-168, 1999.
[33] J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger, "Hydrogen response mechanism of Pt–GaN Schottky diodes," Applied Physics Letters, vol. 80, pp. 1222-1224, 2002.
[34] O.K. Varghese, G.K. Mor, M. Paulose, and C.A. Grimes, "A titania nanotube-array room-temperature sensor for selective detection of low hydrogen concentrations," MRS Online Proceedings Library Archive, vol. 828, pp., 2004.
[35] H. Bai, and G. Shi, "Gas sensors based on conducting polymers," Sensors, vol. 7, pp. 267-307, 2007.
[36] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, "A hydrogen− sensitive MOS field− effect transistor," Applied Physics Letters, vol. 26, pp. 55-57, 1975.
[37] L.M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, "A new hydrogen sensor based on a Pt/GaAs Schottky diode," Journal of The Electrochemical Society, vol. 138, pp. 159-162, 1991.
[38] H.-I. Chen, C.-K. Hsiung, and Y.-I. Chou, "Characterization of Pd–GaAs Schottky diodes prepared by the electroless plating technique," Semiconductor science and technology, vol. 18, pp. 620, 2003.
[39] H.J. Pan, K.W. Lin, K.H. Yu, C.C. Cheng, K.B. Thei, W.C. Liu, and H.I. Chen, "Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,", Electronics Letters, Institution of Engineering and Technology 2002, pp. 92-94.
[40] I.C. Yen, C. Chia-Ming, L. Wen-Chau, and C. Huey-Ing, "A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles," IEEE Electron Device Letters, vol. 26, pp. 62-65, 2005.
[41] V. Battut, J.P. Blanc, and C. Maleysson, "Gas sensitivity of InP epitaxial thin layers," Sensors and Actuators B: Chemical, vol. 44, pp. 503-506, 1997.
[42] H.-I. Chen, and Y.-I. Chou, "Evaluation of the perfection of the Pd–InP Schottky interface from the energy viewpoint of hydrogen adsorbates," Semiconductor science and technology, vol. 19, pp. 39, 2003.
[43] H.-I. Chen, Y.-I. Chou, and C.-K. Hsiung, "Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd–InP Schottky diode," Sensors and Actuators B: Chemical, vol. 92, pp. 6-16, 2003.
[44] V. Battut, J. Blanc, E. Goumet, V. Soulière, and Y. Monteil, "NO2 sensor based on InP epitaxial thin layers," Thin solid films, vol. 348, pp. 266-272, 1999.
[45] M. Yousuf, B. Kuliyev, B. Lalevic, and T. Poteat, "Pd/ InP Schottky diode hydrogen sensors," Solid-State Electronics, vol. 25, pp. 753-758, 1982.
[46] S. Roy, C. Jacob, and S. Basu, "Ohmic contacts to 3C-SiC for Schottky diode gas sensors," Solid-State Electronics, vol. 47, pp. 2035-2041, 2003.
[47] F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, and M. Eickhoff, "A highly stable SiC based microhotplate NO2 gas-sensor," Sensors and Actuators B: Chemical, vol. 78, pp. 216-220, 2001.
[48] A. Lloyd Spetz, L. Unéus, H. Svenningstorp, P. Tobias, L.G. Ekedahl, O. Larsson, A. Göras, S. Savage, C. Harris, P. Mårtensson, R. Wigren, P. Salomonsson, B. Häggendahl, P. Ljung, M. Mattsson, and I. Lundström, "SiC Based Field Effect Gas Sensors for Industrial Applications," physica status solidi (a), vol. 185, pp. 15-25, 2001.
[49] F. Qiu, M. Matsumiya, W. Shin, N. Izu, and N. Murayama, "Investigation of thermoelectric hydrogen sensor based on SiGe film," Sensors and Actuators B: Chemical, vol. 94, pp. 152-160, 2003.
[50] Y. Gurbuz, W.P. Kang, J.L. Davidson, and D.V. Kerns, "Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors," Sensors and Actuators B: Chemical, vol. 35, pp. 68-72, 1996.
[51] Y. Gurbuz, W.P. Kang, J.L. Davidson, D.L. Kinser, and D.V. Kerns, "Diamond microelectronic gas sensors," Sensors and Actuators B: Chemical, vol. 33, pp. 100-104, 1996.
[52] Y. Gurbuz, W.P. Kang, J.L. Davidson, and D.V. Kerns, "Current conduction mechanism and gas adsorption effects on device parameters of the Pt/SnO/sub x//diamond gas sensor," IEEE Transactions on Electron Devices, vol. 46, pp. 914-920, 1999.
[53] J. Kim, B.P. Gila, G.Y. Chung, C.R. Abernathy, S.J. Pearton, and F. Ren, "Hydrogen-sensitive GaN Schottky diodes," Solid-State Electronics, vol. 47, pp. 1069-1073, 2003.
[54] J. Song, W. Lu, J.S. Flynn, and G.R. Brandes, "AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals," Solid-state electronics, vol. 49, pp. 1330-1334, 2005.
[55] D. Qiao, L.S. Yu, S.S. Lau, J.M. Redwing, J.Y. Lin, and H.X. Jiang, "Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction," Journal of Applied Physics, vol. 87, pp. 801-804, 1999.
[56] A. Imre, E. Gontier-Moya, D.L. Beke, and B. Ealet, "Auger electron spectroscopy of the kinetics of evaporation of palladium beaded films from sapphire substrate," Applied Physics A, vol. 67, pp. 469-473, 1998.
[57] T.S. Huang, and J.G. Pang, "Thermal stability of the Pd-Al alloy Schottky contacts to n-GaAs," Materials Science and Engineering: B, vol. 49, pp. 144-151, 1997.
[58] H.D. Tong, A.H.J. vanden Berg, J.G.E. Gardeniers, H.V. Jansen, F.C. Gielens, and M.C. Elwenspoek, "Preparation of palladium–silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrane," Thin Solid Films, vol. 479, pp. 89-94, 2005.
[59] F. Edelman, C. Cytermann, R. Brener, M. Eizenberg, R. Weil, and W. Beyer, "Interfacial processes in the Pd/a-Ge:H system," Applied Surface Science, vol. 70-71, pp. 722-726, 1993.
[60] S. Uemiya, T. Endo, R. Yoshiie, W. Katoh, and T. Kojima, "Fabrication of Thin Palladium-Silver Alloy Film by Using Electroplating Technique," MATERIALS TRANSACTIONS, vol. 48, pp. 1119-1123, 2007.
[61] D. Baudrand, and J. Bengston, "Electroless plating processes: Developing technologies for electroless nickel, palladium, and gold," Metal Finishing, vol. 93, pp. 55-57, 1995.
[62] J. Suehiro, S.-I. Hidaka, S. Yamane, and K. Imasaka, "Fabrication of interfaces between carbon nanotubes and catalytic palladium using dielectrophoresis and its application to hydrogen gas sensor," Sensors and Actuators B: Chemical, vol. 127, pp. 505-511, 2007.
[63] L. Huang, C.S. Chen, Z.D. He, D.K. Peng, and G.Y. Meng, "Palladium membranes supported on porous ceramics prepared by chemical vapor deposition," Thin Solid Films, vol. 302, pp. 98-101, 1997.
[64] T. Pluym, S. Lyons, Q. Powell, A. Gurav, T. Kodas, L. Wang, and H. Glicksman, "Palladium metal and palladium oxide particle production by spray pyrolysis," Materials research bulletin, vol. 28, pp. 369-376, 1993.
[65] C.-M. Chang, M.-H. Hon, and C. Leu, "Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms," Rsc Advances, vol. 2, pp. 2469-2475, 2012.
[66] H.-I. Chen, K.-C. Chuang, C.-H. Chang, W.-C. Chen, I.-P. Liu, and W.-C. Liu, "Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode," Sensors and Actuators B: Chemical, vol. 246, pp. 408-414, 2017.
[67] C.-C. Chen, H.-I. Chen, I.-P. Liu, H.-Y. Liu, P.-C. Chou, J.-K. Liou, and W.-C. Liu, "Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment," Sensors and Actuators B: Chemical, vol. 211, pp. 303-309, 2015.
[68] H.-I. Chen, Y.-C. Cheng, C.-H. Chang, W.-C. Chen, I.-P. Liu, K.-W. Lin, and W.-C. Liu, "Hydrogen sensing performance of a Pd nanoparticle/Pd film/GaN-based diode," Sensors and Actuators B: Chemical, vol. 247, pp. 514-519, 2017.
[69] C.-S. Hsu, K.-W. Lin, and W.-C. Liu, "A wireless-transfer-based hydrogen gas sensing system with a Pd/AlGaN/GaN heterostructure field-effect transistor (HFET)," IEEE Sensors Journal, vol. 13, pp. 2299-2304, 2013.
[70] C.-C. Huang, H.-I. Chen, I.-P. Liu, C.-C. Chen, P.-C. Chou, J.-K. Liou, and W.-C. Liu, "Comprehensive study of hydrogen sensing phenomena of an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET)," Sensors and Actuators B: Chemical, vol. 190, pp. 913-921, 2014.
[71] D. Jewett, and A. Makrides, "Diffusion of hydrogen through palladium and palladium-silver alloys," Transactions of the Faraday Society, vol. 61, pp. 932-939, 1965.
[72] G. Alefeld, and J. Völkl, "Hydrogen in metals II," Hydrogen in Metals II: Application-Oriented Properties, vol., pp., 1978.
[73] G. Alefeld, and J. Völkl, Hydrogen in metals I-Basic properties, Berlin and New York, Springer-Verlag (Topics in Applied Physics. Volume 28), 1978. 442 p.(For individual items see A79-16057 to A79-16061)1978.
[74] C.-F. Chang, T.-H. Tsai, H.-I. Chen, K.-W. Lin, T.-P. Chen, L.-Y. Chen, Y.-C. Liu, and W.-C. Liu, "Hydrogen sensing properties of a Pd/SiO2/AlGaN-based MOS diode," Electrochemistry Communications, vol. 11, pp. 65-67, 2009.
[75] H. Hasegawa, and M. Akazawa, "Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 25, pp. 1495-1503, 2007.
[76] Y. Li, S.H. Chan, and Q. Sun, "Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review," Nanoscale, vol. 7, pp. 8663-8683, 2015.
[77] Y. Izumi, "Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond," Coordination Chemistry Reviews, vol. 257, pp. 171-186, 2013.
[78] S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, "Distributed hydrogen determination with fiber-optic sensor," Sensors and Actuators B: Chemical, vol. 108, pp. 508-514, 2005.
[79] S.-Y. Chiu, H.-W. Huang, T.-H. Huang, K.-C. Liang, K.-P. Liu, J.-H. Tsai, and W.-S. Lour, "Comprehensive study of Pd/GaN metal–semiconductor–metal hydrogen sensors with symmetrically bi-directional sensing performance," Sensors and Actuators B: Chemical, vol. 138, pp. 422-427, 2009.
[80] C.-H. Huang, J.-H. Tsai, T.-M. Tsai, K.-Y. Hsu, W.-C. Yang, H.-W. Huang, and W.-S. Lour, "Hydrogen Sensor with Pd Nanoparticles upon an Interfacial Layer with Oxygen," Applied Physics Express, vol. 3, pp. 075001, 2010.
[81] M. Ali, V. Cimalla, V. Lebedev, V. Tilak, P.M. Sandvik, D.W. Merfeld, and O. Ambacher, "A Study of Hydrogen Sensing Performance of Pt–GaN Schottky Diodes," IEEE Sensors Journal, vol. 6, pp. 1115-1119, 2006.
[82] S.-W. Tan, J.-H. Tsai, S.-W. Lai, C. Lo, and W.-S. Lour, "Hydrogen-sensitive sensor with stabilized Pd-mixture forming sensing nanoparticles on an interlayer," International Journal of Hydrogen Energy, vol. 36, pp. 15446-15454, 2011.
[83] Y.-L. Wang, F. Ren, U. Zhang, Q. Sun, C.D. Yerino, T.S. Ko, Y.S. Cho, I.H. Lee, J. Han, and S.J. Pearton, "Improved hydrogen detection sensitivity in N-polar GaN Schottky diodes," Applied Physics Letters, vol. 94, pp. 212108, 2009.
[84] S.-Y. Chiu, H.-W. Huang, T.-H. Huang, K.-C. Liang, K.-P. Liu, J.-H. Tsai, and W.-S. Lour, "Comprehensive investigation on planar type of Pd–GaN hydrogen sensors," International Journal of Hydrogen Energy, vol. 34, pp. 5604-5615, 2009.
[85] B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy, and S.J. Pearton, "Comparison of MOS and Schottky W/Pt–GaN diodes for hydrogen detection," Sensors and Actuators B: Chemical, vol. 104, pp. 232-236, 2005.
[86] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, " AlGaN/GaN MOS-HEMT With HfO2 Dielectric and Al2O3 Interfacial Passivation Layer Grown by Atomic Layer Deposition," IEEE Electron Device Letters, vol. 29, pp. 838-840, 2008.
[87] A. Rizzi, M. Kocan, J. Malindretos, A. Schildknecht, N. Teofilov, K. Thonke, and R. Sauer, "Surface and interface electronic properties of AlGaN(0001) epitaxial layers," Applied Physics A, vol. 87, pp. 505-509, 2007.
[88] H.-I. Chen, K.-C. Chuang, C.-H. Chang, W.-C. Chen, I.P. Liu, and W.-C. Liu, "Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode," Sensors and Actuators B: Chemical, vol. 246, pp. 408-414, 2017.
[89] H. Hasegawa, and M. Akazawa, "Hydrogen sensing characteristics and mechanism of Pd∕AlGaN∕GaN Schottky diodes subjected to oxygen gettering," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 25, pp. 1495-1503, 2007.
[90] B.S. Kang, H.T. Wang, F. Ren, B.P. Gila, C.R. Abernathy, S.J. Pearton, J.W. Johnson, P. Rajagopal, J.C. Roberts, E.L. Piner, and K.J. Linthicum, "pH sensor using AlGaN∕GaN high electron mobility transistors with Sc2O3 in the gate region," Applied Physics Letters, vol. 91, pp. 012110, 2007.
[91] T.-H. Tsai, J.-R. Huang, K.-W. Lin, W.-C. Hsu, H.-I. Chen, and W.-C. Liu, "Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode," Sensors and Actuators B: Chemical, vol. 129, pp. 292-302, 2008.
[92] C.-C. Chen, H.-I. Chen, I.P. Liu, H.-Y. Liu, P.-C. Chou, J.-K. Liou, and W.-C. Liu, "Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment," Sensors and Actuators B: Chemical, vol. 211, pp. 303-309, 2015.
[93] C.-C. Chen, H.-I. Chen, H.-Y. Liu, P.-C. Chou, J.-K. Liou, and W.-C. Liu, "On a GaN-based ion sensitive field-effect transistor (ISFET) with a hydrogen peroxide surface treatment," Sensors and Actuators B: Chemical, vol. 209, pp. 658-663, 2015.
[94] H. Liu, B. Chou, W. Hsu, C. Lee, and C. Ho, "A Simple Gate-Dielectric Fabrication Process for AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors," IEEE Electron Device Letters, vol. 33, pp. 997-999, 2012.
[95] C.-M. Chang, M.-H. Hon, and I.-C. Leu, "Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms," RSC Advances, vol. 2, pp. 2469-2475, 2012.
[96] K.-S. Choi, and S.-P. Chang, "Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes," Materials Letters, vol. 230, pp. 48-52, 2018.
[97] T.-R. Rashid, D.-T. Phan, and G.-S. Chung, "A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape," Sensors and Actuators B: Chemical, vol. 185, pp. 777-784, 2013.
[98] B. Ke, and W. Liu, "Enhancement of Hydrogen Sensing Performance of a Pd Nanoparticle/Pd Film/GaOx/GaN-Based Metal–Oxide– Semiconductor Diode," IEEE Transactions on Electron Devices, vol. 65, pp. 4577-4584, 2018.
[99] K. Hassan, A.S.M. Iftekhar Uddin, and G.-S. Chung, "Fast-response hydrogen sensors based on discrete Pt/Pd bimetallic ultra-thin films," Sensors and Actuators B: Chemical, vol. 234, pp. 435-445, 2016.
[100] N. Toshima, and T. Yonezawa, "Bimetallic nanoparticles—novel materials for chemical and physical applications," New Journal of Chemistry, vol. 22, pp. 1179-1201, 1998.
[101] J. Rodriguez, "Physical and chemical properties of bimetallic surfaces," Surface Science Reports, vol. 24, pp. 223-287, 1996.
[102] H.-I. Chen, Y.-C. Cheng, C.-H. Chang, W.-C. Chen, I.P. Liu, K.-W. Lin, and W.-C. Liu, "Hydrogen sensing performance of a Pd nanoparticle/Pd film/GaN-based diode," Sensors and Actuators B: Chemical, vol. 247, pp. 514-519, 2017.
[103] J.-R. Huang, W.-C. Hsu, Y.-J. Chen, T.-B. Wang, K.-W. Lin, H.-I. Chen, and W.-C. Liu, "Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0. 3Ga0. 7As Schottky diodes," Sensors and Actuators B: Chemical, vol. 117, pp. 151-158, 2006.
[104] P.-C. Chou, H.-I. Chen, I.-P. Liu, C.-W. Hung, C.-C. Chen, J.-K. Liou, and W.-C. Liu, "Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor," Sensors and Actuators B: Chemical, vol. 203, pp. 258-262, 2014.
[105] I. Lundström, and L.G. Petersson, "Chemical sensors with catalytic metal gates," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 14, pp. 1539-1545, 1996.
[106] C.-H. Chang, K.-W. Lin, H.-H. Lu, R.-C. Liu, and W.-C. Liu, "Hydrogen sensing performance of a Pd/HfO2/GaOx/GaN based metal-oxide-semiconductor type Schottky diode," International Journal of Hydrogen Energy, vol. 43, pp. 19816-19824, 2018.
[107] L.G. Petersson, H. Dannetun, J. Fogelberg, and I. Lundström, "Oxygen as promoter or poison in the catalytic dissociation of H2, C2H4, C2H2, and NH3 on Palladium," Applied Surface Science, vol. 27, pp. 275-284, 1986.
[108] R. Silbey, and R. Alberty, "Physical chemistry–3rd ed., John Willey & Sons," Inc, New York, vol., pp., 2001.
[109] O. Weidemann, M. Hermann, G. Steinhoff, H. Wingbrant, A. Lloyd Spetz, M. Stutzmann, and M. Eickhoff, "Influence of surface oxides on hydrogen-sensitive Pd: GaN Schottky diodes," Applied physics letters, vol. 83, pp. 773-775, 2003.
[110] T. Hübert, L. Boon-Brett, V. Palmisano, and M.A. Bader, "Developments in gas sensor technology for hydrogen safety," international journal of hydrogen energy, vol. 39, pp. 20474-20483, 2014.
[111] A. Salehi, A. Nikfarjam, and D.J. Kalantari, "Pd/porous-GaAs Schottky contact for hydrogen sensing application," Sensors and Actuators B: Chemical, vol. 113, pp. 419-427, 2006.
[112] N. Yamamoto, S. Tonomura, T. Matsuoka, and H. Tsubomura, "Effect of various substrates on the hydrogen sensitivity of palladium‐semiconductor diodes," Journal of Applied Physics, vol. 52, pp. 6227-6230, 1981.
[113] C.-T. Lu, K.-W. Lin, H.-I. Chen, H.-M. Chuang, C.-Y. Chen, and W.-C. Liu, "A new Pd-oxide-Al/sub 0.3/Ga/sub 0.7/As MOS hydrogen sensor," IEEE Electron Device Letters, vol. 24, pp. 390-392, 2003.
[114] K.-W. Lin, H.-I. Chen, C.-T. Lu, Y.-Y. Tsai, H.-M. Chuang, C.-Y. Chen, and W.-C. Liu, "A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor," Semiconductor science and technology, vol. 18, pp. 615, 2003.
[115] S. Nakagomi, A. Fukumura, Y. Kokubun, S. Savage, H. Wingbrant, M. Andersson, I. Lundström, M. Löfdahl, and A.L. Spetz, "Influence of gate bias of MISiC-FET gas sensor device on the sensing properties," Sensors and Actuators B: Chemical, vol. 108, pp. 501-507, 2005.
[116] S. Nakagomi, K. Okuda, and Y. Kokubun, "Electrical properties dependent on H2 gas for new structure diode of Pt–thin WO3–SiC," Sensors and Actuators B: Chemical, vol. 96, pp. 364-371, 2003.
[117] K. Matsuo, N. Negoro, J. Kotani, T. Hashizume, and H. Hasegawa, "Pt Schottky diode gas sensors formed on GaN and AlGaN/GaN heterostructure," Applied Surface Science, vol. 244, pp. 273-276, 2005.
[118] S. Jung, K.H. Baik, F. Ren, S.J. Pearton, and S. Jang, "Temperature and humidity dependence of response of PMGI-encapsulated Pt-AlGaN/GaN diodes for hydrogen sensing," IEEE Sensors Journal, vol. 17, pp. 5817-5822, 2017.
[119] H. Kim, W. Lim, J.-H. Lee, S. Pearton, F. Ren, and S. Jang, "Highly sensitive AlGaN/GaN diode-based hydrogen sensors using platinum nanonetworks," Sensors and Actuators B: Chemical, vol. 164, pp. 64-68, 2012.
[120] Y.-L. Wang, F. Ren, W. Lim, S. Pearton, K.H. Baik, S.-M. Hwang, Y.G. Seo, and S. Jang, "Hydrogen sensing characteristics of non-polar a-plane GaN Schottky diodes," Current Applied Physics, vol. 10, pp. 1029-1032, 2010.
[121] Y.-Y. Tsai, K.-W. Lin, H.-I. Chen, I.-P. Liu, C.-W. Hung, T.-P. Chen, T.-H. Tsai, L.-Y. Chen, K.-Y. Chu, and W.-C. Liu, "Hydrogen sensing properties of a Pt-oxide-GaN Schottky diode," Journal of Applied Physics, vol. 104, pp. 024515, 2008.
[122] T.-H. Tsai, H.-I. Chen, I.-P. Liu, C.-W. Hung, T.-P. Chen, L.-Y. Chen, Y.-J. Liu, and W.-C. Liu, "Investigation on a Pd–AlGaN/GaN Schottky diode-type hydrogen sensor with ultrahigh sensing responses," IEEE Transactions on Electron Devices, vol. 55, pp. 3575-3581, 2008.
[123] J.-R. Huang, W.-C. Hsu, Y.-J. Chen, T.-B. Wang, H.-I. Chen, and W.-C. Liu, "Investigation of hydrogen-sensing characteristics of a Pd/GaN Schottky diode," IEEE Sensors Journal, vol. 11, pp. 1194-1200, 2010.
[124] C.-W. Hung, T.-H. Tsai, H.-I. Chen, Y.-Y. Tsai, T.-P. Chen, and W.-C. Liu, "Further investigation of a hydrogen-sensing Pd/GaAs heterostructure field-effect transistor (HFET)," Sensors and Actuators B: Chemical, vol. 132, pp. 587-592, 2008.
[125] T.-H. Tsai, H.-I. Chen, K.-W. Lin, Y.-W. Kuo, C.-F. Chang, C.-W. Hung, L.-Y. Chen, T.-P. Chen, Y.-C. Liu, and W.-C. Liu, "SiO2 passivation effect on the hydrogen adsorption performance of a Pd/AlGaN-based Schottky diode," Sensors and Actuators B: Chemical, vol. 136, pp. 338-343, 2009.
[126] C.-C. Cheng, Y.-Y. Tsai, K.-W. Lin, H.-I. Chen, W.-H. Hsu, H.-M. Chuang, C.-Y. Chen, and W.-C. Liu, "Hydrogen sensing characteristics of Pd-and Pt-Al0. 3Ga0. 7As metal–semiconductor (MS) Schottky diodes," Semiconductor science and technology, vol. 19, pp. 778, 2004.
[127] Y.-Y. Tsai, C.-W. Hung, S.-I. Fu, P.-H. Lai, H.-C. Chang, H.-I. Chen, and W.-C. Liu, "Comprehensive investigation of hydrogen-sensing properties of Pt/InAlP-based Schottky diodes," Sensors and Actuators B: Chemical, vol. 124, pp. 535-541, 2007.
[128] M.E. Franke, T.J. Koplin, and U. Simon, "Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?," Small, vol. 2, pp. 36-50, 2006.
[129] S. Jung, K.H. Baik, F. Ren, S.J. Pearton, and S. Jang, "Pt-AlGaN/GaN hydrogen sensor with water-blocking PMMA layer," IEEE Electron Device Letters, vol. 38, pp. 657-660, 2017.
[130] E.L. Murphy, and R. Good Jr, "Thermionic emission, field emission, and the transition region," Physical review, vol. 102, pp. 1464, 1956.
[131] A. Schmitz, A. Ping, M.A. Khan, Q. Chen, J. Yang, and I. Adesida, "Schottky barrier properties of various metals on n-type GaN," Semiconductor Science and Technology, vol. 11, pp. 1464, 1996.
[132] P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J.F. Gilchrist, "Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays," Langmuir, vol. 24, pp. 12150-12157, 2008.
[133] P.I. Stavroulakis, N. Christou, and D. Bagnall, "Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly," Materials Science and Engineering: B, vol. 165, pp. 186-189, 2009.
[134] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, and T.A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops," Nature, vol. 389, pp. 827, 1997.
[135] K. Stephan, L.-C. Zhong, and P. Stephan, "Influence of capillary pressure on the evaporation of thin liquid films," Heat and mass transfer, vol. 30, pp. 467-472, 1995.
[136] P. Wayner Jr, "Interfacial profile in the contact line region of a finite contact angle system," Journal of Colloid and Interface Science, vol. 77, pp. 495-500, 1980.
[137] C. Lo, C. Chang, B. Chu, S. Pearton, A. Dabiran, P. Chow, and F. Ren, "Effect of humidity on hydrogen sensitivity of Pt-gated AlGaN/GaN high electron mobility transistor based sensors," Applied Physics Letters, vol. 96, pp. 232106, 2010.
[138] G. Chen, A.H.W. Choi, P.T. Lai, and W.M. Tang, "Schottky-diode hydrogen sensor based on InGaN/GaN multiple quantum wells," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 32, pp. 011212, 2014.
[139] S.-Y. Chiu, J.-H. Tsai, H.-W. Huang, K.-C. Liang, T.-H. Huang, K.-P. Liu, T.-M. Tsai, K.-Y. Hsu, and W.-S. Lour, "Hydrogen sensors with double dipole layers using a Pd-mixture-Pd triple-layer sensing structure," Sensors and Actuators B: Chemical, vol. 141, pp. 532-537, 2009.
[140] F. Yam, and Z. Hassan, "Schottky diode based on porous GaN for hydrogen gas sensing application," Applied Surface Science, vol. 253, pp. 9525-9528, 2007.
[141] T. Anderson, H. Wang, B. Kang, F. Ren, S. Pearton, A. Osinsky, A. Dabiran, and P. Chow, "Effect of bias voltage polarity on hydrogen sensing with AlGaN/GaN Schottky diodes," Applied Surface Science, vol. 255, pp. 2524-2526, 2008.
[142] W. Xin-Hua, W. Xiao-Liang, F. Chun, X. Hong-Ling, Y. Cui-Bai, W. Jun-Xi, W. Bao-Zhu, R. Jun-Xue, and W. Cui-Mei, "Hydrogen Sensors Based on AlGaN/AlN/GaN Schottky Diodes," Chinese Physics Letters, vol. 25, pp. 266, 2008.