| 研究生: |
林宛嫺 Lin, Wan-Hsien |
|---|---|
| 論文名稱: |
溶膠凝膠法與固相法製備鉭酸鈉及其應用於紫外光分解水製氫之研究 NaTaO3 Synthesized by Sol-Gel and Solid-State Methods and Its Application in Water-splitting for H2 Generation Under UV Light Illumination |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 鉭酸鈉 、光觸媒 、分解水 、溶膠凝膠法 |
| 外文關鍵詞: | water splitting, sol-gel, photocatalyst, NaTaO3 |
| 相關次數: | 點閱:70 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用眾所皆知的溶膠凝膠法(SG)製備高表面積且結晶性好的鉭酸鈉奈米顆粒(SG500)。與傳統固相法(SS)製備的低表面積觸媒(SS1200)相比,SG500可提供較多的活性座以利電子電洞對與水反應產生氫氣跟氧氣,此外,較小的結晶粒徑可縮短電子電洞傳遞的路徑,降低電子電洞對再結合的機率。本研究也探討氧化鎳共觸媒效應,使鉭酸鈉進一步提升光分解水的效率。於觸媒鑑定方面,主要利用TGA分析溶膠凝膠法製備鉭酸鈉的鍛燒過程,其結果顯示在低溫下 (550C) 即可得到純相的鉭酸鈉。由XRD鑑定得知SG和SS分別為兩種不同的結晶結構。我們同時以拉曼光譜佐證XRD的結果,並將XRD分析結果配合文獻所知利用電腦軟體模擬其原子排列結構,並經由第一原理的計算求得SG500與SS1200的電子能量狀態密度 (Density of state) 與電子能帶結構 (Band structure)。表面分析方面,由SEM觀察其表面結構得知,SS1200顆粒大小介於2-3 μm,並在顆粒表面發現奈米階梯狀的排列,層與層之間的距離大約10 nm;反觀SG500顆粒大小約為30-50 nm,且為不規則形狀。我們更利用HR-TEM分析其電子繞射圖譜並深入探討其結晶性。由UV-Vis吸收光譜分析得知SS1200和SG500的能隙大小分別為4.0 eV與4.1 eV。最後以懸浮法分解水測試觸媒的光催化活性,研究結果發現,不論在何種鍛燒溫度下,利用溶膠凝膠法製備之鉭酸鈉在光分解水的活性皆比SS1200高許多,由此可知光觸媒奈米化造成結晶結構的變化的確有助於提高光分解水效率。
A well-known sol-gel synthesis route was developed to prepare high surface area and fine crystalline Perovskite-type NaTaO3 nanoparticles (denoted as SG500). Compared to the NaTaO3 with low surface area that prepared from traditional solid-state method (denoted as SS1200), SG500 provides more active sites for electron-hole pair to react with water and evolve H2 and O2. Furthermore, the decreasing of crystalline size implies the reducing of the probability of electron-hole recombination. In present work, the effect of NiO cocatalyst is also discussed to promote the photocatalytic water-splitting efficiency of NaTaO3. For the characterization of these photocatalysts, TGA is employed to analyze the calcination process of the NaTaO3 synthesized from sol-gel method. The result shows that pure NaTaO3 powder could be obtained when the calcination temperature goes higher than 550C. SG and SS are two kinds of crystalline structure after XRD identification. This consequence is also proved by Raman spectrum. According to the result of XRD as well as reported papers, we are able to simulate the atoms arrangement in NaTaO3 by computer software and also calculate the DOS and band structures of SG500 and SS1200 by First-Principle Theory. From the surface morphology observed by SEM, the particle size of SS1200 is about 2-3 μm while SG500 with irregular shape is around 30-50 nm. Nanostep arrangement is found on the particle surface of SS1200 as well as the distant between layer and layer is about 10 nm. We also use HR-TEM to analyze the electron diffraction pattern and discuss its crystallography. The band gaps of SS1200 and SG500 are estimated to be 4.0 eV and 4.1 eV by UV-Vis diffuse reflectance spectra, respectively. Consequently, SGNaTaO3 exhibit higher photocatalytic activity in suspension water-splitting system than that of SS1200, especially SG500, owing to the synthesis of nanoparticles which indeed leads to the transformation of the crystalline structure.
1. 馬遠榮,“奈米科技”,商周出版 (2002)
2. Kubo R., “Electronic Properties of Metallic Fine Particles”, J. Phys.
Soc. Japan, 17, 975 (1962).
3. 曹茂盛,“奈米材料導論”,學富文化出版 (2002)
4. 林淑萍,“LaMnO3粉末之製備及其性質研究”,國立成功大學材料科學及工程學系碩士
論文 (2000)
5. 劉仲明、郭東瀛,“奈米技術與產業發展系列第二輯:奈米材料”,國科會科資中心
(2002)
6. 吳國卿、董玉蘭, “奈米粒子材料的觸媒性質”,化工資訊 (1999)
7. 吳坤陽,“溶凝膠法製備含銀之AZO透明導電膜的研究”,國立成功大學化學工程學系
碩士論文 (2005)
8. 丁志明等…, “奈米科技―基礎、應用與實作” ,南區奈米科技K-12教育發展中心,
高立圖書 (2005)
9. S. Licht, “Solar Water Splitting To Generate Hydrogen Fuel: Photothermal
Electrochemical Analysis”, J. Phys. Chem. B, 107, 4253 (2003).
10.S. Licht, “Multiple Band Gap Semiconductor/Electrolyte Solar Energy
Conversion”, J. Phys. Chem. B, 105, 6281 (2001).
11.S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch,
“Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si
Photoelectrolysis”, J. Phys. Chem. B, 104, 8920 (2000).
12.張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒”,協志工業叢書印行 (2000)
13.藤嶋 昭,本多健一,菊池真一,“工業化學”,72, 108 (1969)
14.A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a
Semiconductor Electrode”, Nature, 238, 37 (1972).
15.A. Kudo, H. Kato and I. Tsuji, “Strategies for the Development of Visible-
light-driven Photocatalysts for Water Splitting”, Chem. Lett., 33, 1534
(2004).
16.M. Gratzel, “Photoelectrochemical Cells”, Nature 414, 338, (2001).
17.A. Kudo, “Photocatalyst Materials for Water Splitting”, Catal. Surv.
Asia, 7, 31 (2003).
18.K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, “Stoichiometric Water
Splitting into H2 and O2 Using a Mixture of Two Different Photocatalysts
and An IO3—/I— Shuttle Redox Mediator Under Visible Light Irradiation”,
Chem. Commun., 2416, (2001).
19.Shahed U. M. Khan and J. Akikusa, “Photoelectrochemical Splitting of Water
at Nanocrystalline n-Fe2O3 Thin-Film Electrodes” J. Phys. Chem. B, 103,
7184 (1999).
20.E. L. Miller, R. E. Rocheleau and X. M. Deng, “Design Considerations for a
Hybrid Amorphous Silicon/photoelectrochemical Multijunction Cell for
Hydrogen Production”, Int. J. Hydrogen Energ., 28, 615 (2003).
21.N. G. Dhere and A. H. Jahagirdar, “Photoelectrochemical Water Splitting
for Hydrogen Production Using Combination of CIGS2 Solar Cell and RuO2
Photocatalyst”, Thin Solid Films, 480, 462 (2005).
22.H. Kato and A. Kudo, “Water Splitting into H2 and O2 on Alkali Tantalate
Photocatalysts ATaO3 (A = Li, Na, and K)”, J. Phys. Chem. B, 105, 4285
(2001).
23.K. Domen, S. Naito, T. Onishi and K. Tamaru, “Study of the Photocatalytic
Decomposition of Water Vapor over a NiO-SrTiO3 Catalyst”, J. Phys. Chem.,
86, 3657 (1982).
24.R. J. H. Voorhoeve, “Advanced Materials in Catalysis”, Academic Press,
New York, Chap. 5 (1977).
25.S. K. Dickinson, Jr. “Ionic, Covalent and Metallic Radii of the Chemical
Elements”, Tech. Rep. AF CRL-70-0727, National Technical Information
Center (1970).
26.R. D. Shannon and C. T. Prewitt, “Effective Ionic Radii in Oxides and
Fluorides”, Acta Cryst., B25, 925 (1969).
27.H. Kato, K. Asakura and A. Kudo, “Highly Efficient Water Splitting into H2
and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity
and Surface Nanostructure”, J. Am. Chem. Soc., 125, 3082 (2003).
28.H. Kato and A. Kudo, “New Tantalate Photocatalysts for Water Decomposition
into H2 and O2”, Chem. Phys. Lett., 295, 487 (1998).
29.A. Kudo and H. Kato, “Effect of Lanthanide-doping into NaTaO3
Photocatalysts for Efficient Water Splitting”, Chem. Phys. Lett., 331, 373
(2000).
30.H. Kato, H. Kobayashi and A. Kudo, “Role of Ag+ in the Band Structures and
Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite
Structure.”, J. Phys. Chem. B, 106, 12441 (2002).
31.C. T. Xia, E. W. Shi, W. Z. Zhong and J. K. Guo, “Preparation of BaTiO3 by
the Hydrothermal Method”, J. Eur. Ceram. Soc., 15, 1171 (1995).
32.L. Marchetti, L. Forni “Catalytic Combustion of Methane over
Perovskites”, Applied Catalysis B:Environemtal, 15, 179 (1998).
33.D. Kieβling, R. Schneider, P. Kraak, M. Haftendorn and G. Wendt,
“Perovskite-type Oxides-Catalysts for the Total Oxidation of Chlorinated
Hydrocarbons”, Applied Catalysis B:Environmental, 19, 143 (1998).
34.Y. N. Lee, Z. E. Fadli, F. Sapiña, E. M. Tamayo and V. C. Corbernán,
“Synthesis and Surface Characterization of Nanometric La1-xKxMnO3+δ
particles”, Catalysis Today, 52, 45 (1999).
35.C. Y. Lee, N. H. Tai, H. S. Sheu, H. T. Chiu and S. H. Hsieh, “The
Formation of Perovskite PbTiO3 Powders by Sol-Gel Process”, Mater. Chem.
Phys., 97, 468 (2006).
36.A. Kudo, J. Kato and S. Nakagawa, “Water Splitting into H2 and O2 on New
Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures:
Factors Affecting the Photocatalytic Activity”, J. Phys. Chem. B, 104, 571
(2000).
37.G. Blyholder, “Molecular Orbital View of Chemisorbed Carbon Monoxide”, J.
Phys. Chem., 68, 2772 (1964).
38.X. Liu, Y. Wang, R. C. Liebermann, P. D. Maniar and A. Navrotsky, “Phase
Transition in CaGeO3 Perovskite: Evidence from X-ray Powder Diffraction,
Thermal Expansion and Heat Capacity”, Phys. Chem. Minerals, 18, 224 (1991).
39.E. A. Wood, “Polymorphism in Potassium Niobate, Sodium Niobate, and other
ABO3 Compounds”, Acta Cryst., 4, 353 (1951).
40.C. N. W. Darlington and K. S. Knight, “High-temperature Phases of NaNbO3
and NaTaO3”, Acta Cryst., B55, 24 (1999).
41.B. J. Kennedy and B. A. Hunter, “High-temperature Phases of SrRuO3”,
Phys. Rev. B, 58, 653 (1998).
42.I. G. Ismailzade, “X-ray Diffraction Studies of Phase Transition in Sodium
Tantalate”, Kristallografiya, 7, 718 (1962).
43.M. Ahtee and L. Unonius, “The Structure of NaTaO3 by X-ray Powder
Diffraction”, Acta Cryst., A33, 150 (1977).
44.M. Ahtee and C. N. W. Darlington, “Structures of NaTaO3 by Netron Powder
Diffraction”, Acta Cryst., B36, 1007 (1980).
45.B. J. Kennedy, A. K. Prodjosantoso and C. J. Howard, “Powder Neutron
Diffraction Study of the High Temperature Phase Transitions in NaTaO3”, J.
Phys.: Condens. Matter, 11, 6319 (1999).
46.B. T. Matthias and J. P. Remeika, “Dielectric Properties of Sodium and
Potassium Niobates”, Phys. Rev., 82, 727 (1951).
47.P. Vousden, “A Study of the Unit-cell Dimensions and Symmetry of certain
Ferroelectric Compounds of Niobium and Tantalum at Room Temperature”, Acta
Cryst., 4, 373 (1951).
48.B. T. Matthias, “New Ferroelectric Crystals”, Phys. Rev., 75, 1771 (1949).
49.K. Sayama and H. Arakawa, “Effect of carbonate salt addition on the
photocatalytic decomposition of liquid water over Pt-TiO2 catalyst”, J.
Chem. Soc., Faraday Trans., 93(8), 1647 (1997).
50.K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, “Photocatalytic
Decomposition of Water into H2 and O2 Over NiO-SrTiO3 Powder. 1. Structure
of the Catalyst”, J. Phys. Chem., 90, 292 (1986).
51.M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett and N. D. Nicholson,
“Photoelectrochemistry of Nickel(II) Oxide”, J. Chem. Soc., Faraday Trans.
77(2), 643 (1981).
52.陳寶丞,“以溶膠凝膠法製備用於一氧化氮還原反應之奈米級觸媒”, 國立成功大學
化學工程學系碩士論文 (2001)
53.B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New
York (1962).
54.陳慧英,“溶膠凝膠法在薄膜製備上之應用”,化工技術,第80期, 11月 (1999).
55.W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders”,
Ceram. Bull., 67(10), No. 10, 1673 (1988).
56.J. Livage and M. Henry, “Ultrastructure Processing of Advanced Ceramics”,
(J. D. Mackenzie and D. R. Ulrich, eds.), Wiley, New York , p183. (1988).
57.C. J. Binker, G. W. Scherer, “Sol-gel-Glass:I. Gelation and gel
structure”, J. Non-Cryst. Solids, 70 , 301 (1985).
58.D. C. Bradley, R. C. Mehrotra, D. P. Gaur, “Metal alkoxide”, Academic
Press, London (1978).
59.J. Zarzycki, J. Phalipon, “Synthesis of Glasses from Gels:the Problem of
Monolithic Gels”, J. Mater. Sci., 17, 3371 (1982).
60.M. P. Pechini, “Method of Preparing Lead and Alkaline Earth Titanates and
Niobates and Coationg Method Using the Same to Form a Capacitor”, U. S.
Pat., No. 3 330 697, Jul. 11 (1967).
61.P. A. Lessing, “Mixed-Cation Oxide Powders via Polymeric Precursors”, Am.
Ceram. Soc. Bull., 68(5), 1002 (1989).
62.C. Marcilly, P. Courty and B. Delmon, “Preparation of Highly Dispersed
Mixed Oxides and Oxide Solid Solutions by Pyrolysis of Amorphous Organic
Precursors”, J. Am. Ceram. Soc., 53(1), 56 (1970).
63.J. H. Choy, Y. S. Han, J. T. Kim and Y. H. Kim. “Citrate Route to Ultra-
Fine Barium Polytitanates with Microwave Dielectric Properties”, J. Mater.
Chem., 5(1), 57 (1995).
64.J. H. Choy, Y. S. Han, S. H. Hwang, S. H. Byeon and G. Demazeau, “Citrate
Route to Sn-Doped BaTi4O9 with Microwave Dielectric Properties”, J. Am.
Ceram. Soc., 81(12), 3197 (1998).
65.Y. He, Y. Zhu and N. Wu, “Synthesis of Nanosized NaTaO3 in Low Temperature
and Its Photocatalytic Performance”, J. Solid State Chem., 177, 3868
(2004).
66.J. Xu, D. Xue and C. Yan, “Chemical Synthesis of NaTaO3 Powder at Low-
temperature”, Mater. Lett., 59, 2920 (2005).
67.M. George, S. S. Nair, A. M. John, P. A. Joy and M. R. Anantharaman,
“Structural, Magnetic and Electrical Properties of the Sol-Gel Prepared
Li0.5Fe2.5O4 Fine Particles”, J. Phys. D: Appl. Phys., 39, 900 (2006).
68.Y. Chen, X. Xue and T. Wang, “Large-scale Controlled Synthesis of Silica
Nanotubes Using Zinc Oxide Nanowires as Templates”, Nanotechnology, 16,
1978 (2005).
69.H. He, Y. Wang and Y. Zou, “Photoluminescence Property of ZnO–SiO2
Composites Synthesized by Sol–Gel Method”, J. Phys. D: Appl. Phys. 36,
2972 (2003).
70.C. C. Tsai and H. Teng, “Synthesis of Ba(Mg1/3Ta2/3)O3 Microwave Ceramics
Through a Sol-Gel Route Using Actate Salts”, J. Am. Ceram. Soc., 87, 2080
(2004).
71.B. D. Cullity and S. R. Stock, “Elements of X-Ray Diffraction”, 3rd ed.,
Prentice Hall (2001).
72.C. Kittel, “Introduction to Solid State Physics”, 4th ed., Wiley (1971).
73.M. Yan, F. Chen, J. Zhang and M. Anpo, “Preparation of Controllable
Crystalline Titania and Study on the Photocatalytic Properties” J. Phys.
Chem. B, 109, 8673 (2005).
74.蔡淑慧, “拉曼光譜在奈米碳管檢測上之應用”,奈米通訊,第12卷第2期,財團法人
國家實驗研究院 (2005)
75.D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled and E. Iglesia,
“Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide
Nanostructures”, J. Phys. Chem. B, 103, 630 (1999).
76.汪建民,“材料分析”,中國材料科學學會 (1998)
77.陳力俊,“材料電子顯微鏡”,精密儀器發展中心 (1999)
78.陳力俊,“微電子材料與製程”,中國材料科學學會 (2000)
79.S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in
Multimolecular Layers”, J. Am. Chem. Soc., 60, 390 (1938).
80.陳俊吉,“金屬氧化物半導體在可見光分解水製氫之研究”,國立成功大學化學工程學
系碩士論文 (2005)
81.L. Gao, X. Wang, L. Fei, M. Ji, H. Zheng, H. Zhang, T. Shen and K. Yang,
“Synthesis and Electrochemical Properties of Nanocrystalline V2O5 Flake Via
a Citric Acid-Assistant Sol-Gel Method”, J. Cryst. Growth, 281, 463 (2005).
82.C. H. Perry and N. E. Tornberg, “Optical Phonons in Mixed Sodium Potassium
Tantalates”, Phys. Rev., 183(2), 595 (1969).
83.http://www.aist.go.jp/RIODB/rasmin/E_index.htm
84.Y. X. Wang, W. L. Zhong, C. L. Wang, P. L. Zhang, “First-Principles Study
of the Electronic Structure of NaTaO3”, Solid State Commun., 120, 137
(2001).
85.E. Menéndez-Proupin, G. Gutiérrez, E. Palmeto and J. L. Peña, “Electronic
Sturcture of Crystalline Binary and Ternary Cd-Te-O Compounds”, Phys. Rev.
B, 40, 035112 (2004).
86.L. J. Sham and M. Schlűter, “Density-Functional Theory of the Energy
Gap”, Phys. Rev. Lett., 14, 1888 (1983).
87.J. P. Perdew and M. Levy, “Physical Content of the Exact Kohn-Sham Orbital
Energies: Band Gaps and Derivative Discontinuities”, Phys. Rev. Lett., 14,
1884 (1983).
88.W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and
Correlation Effects”, Phys. Rev., 140, A1133 (1965).