簡易檢索 / 詳目顯示

研究生: 黃奕瑄
Huang, Yi-Hsuan
論文名稱: 仿醫生操作之機械手臂電漿治療系統:電漿裝置之驅動及激發,與第二期糖尿病足首次人體試驗
A Doctor-Mimicking Robot Arm Plasma Treatment System: Driving and Activating the Plasma Device, and the Phase II First-in-Human Trial for Diabetic Foot Ulcers
指導教授: 廖峻德
Liao, Jiunn-Der
潘信誠
Pan, Shin-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 148
中文關鍵詞: 非熱微電漿首次人體臨床試驗視覺型機械手臂仿醫師操作路徑
外文關鍵詞: Non-thermal micro-plasma , First-in-human clinical trial, Vision robot arm, Doctor-mimicking trajectory
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 舒感電漿活膚儀(Gentle Plasma Skin Regenerator Model 2, GPSR_M2)先前已完成六例首次人體臨床試驗,確認了初步安全性及有效性。本研究延續進行臨床試驗,並在通過衛生福利部食品藥物管理署(TFDA),以及國立成功大學醫學院附設醫院人體研究倫理審查會(NCKU IRB)兩單位的修正案後,持續收案。最新結果顯示GPSR_M2在治療過程中無重大不良反應,顯示良好安全性;有效性方面,雖然目前僅完成至第28天的傷口追蹤,初步結果顯示在特定菌種上,例如革蘭氏陰性菌中的奇異變形桿菌,電漿治療具有抑菌潛力,後續仍需擴大樣本並延長觀察以驗證其成效。而在透過臨床施作的過程中可觀察到,慢性傷口的面積較大,且因電漿手持部需與傷口維持約5 mm距離,醫師需長時間施打,造成手部與肩部負擔較大。因此,本研究引入視覺型機械手臂,將其與GPSR_M2整合,輔助醫師進行電漿治療。本研究透過設計雙電漿系統作為機械手臂的末端執行器,與具有辨識傷口位置資訊之視覺型機械手臂結合,構成一套仿醫生操作之機械手臂電漿治療系統。本系統兼顧臨床使用需求與硬體整合技術,並具高精度控制能力。經實驗證明,水平方向與工作距離的精度可到達2 mm以內,而電漿移動速度的誤差可控制1.78 %以內,顯示此系統穩定性。電漿的安全性方面,依據為DIN SPEC 91315,電漿裝置能成功激發電漿,產生活性物種,並且溫度位於規範之40 °C以下,以及紫外光含量位於3000 μJ/cm2以下,符合安全規範。最後,為了提升未來患者對於機械手臂介入治療的接受度,本研究模擬臨床醫師實際操作路徑作為機械手臂移動軌跡。實驗結果顯示,機械手臂的移動軌跡與醫師的操作軌跡關節角度相差於10°之下,顯示此仿醫生操作之機械手臂電漿治療系統應用於臨床上的潛力。

    The Gentle Plasma Skin Regenerator Model 2 (GPSR_M2) previously completed 6 first-in-human clinical cases, confirming preliminary safety and efficacy. This study continues after protocol amendments were approved by the Taiwan Food and Drug Administration (TFDA) and the Institutional Review Board of National Cheng Kung University Hospital (NCKU IRB). Recent results show no major adverse events, indicating good safety. Although wound healing data is available only up to Day 28, initial findings suggest antibacterial potential against certain strains, particularly Gram-negative bacteria such as Proteus mirabilis. Further studies with more cases and extended follow-up are needed. In clinical use, maintaining an approximately 5 mm distance between the handheld device and the wound increased physician fatigue and operation errors. To address this, a vision-guided robot arm was integrated with GPSR_M2 for plasma delivery. A dual-plasma system was designed as the robot end-effector and combined with wound localization, forming a doctor-mimicking robot plasma system. This system meets clinical needs, with horizontal and working distance accuracy within 2 mm, and movement error under 1.78%, demonstrating system stability. The device complies with DIN SPEC 91315, with plasma generation, reactive species, temperature under 40 °C, and UV exposure below 3000 μJ/cm². To improve patient acceptance, the robot followed physician-guided treatment paths, with joint angle deviation within 10°, demonstrating clinical potential.

    摘要 I Extended Abstract II 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XIX 1 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 2 第二章 理論基礎與文獻回顧 4 2.1 非熱微電漿對於促進傷口癒合的理論基礎 4 2.2 菌種對非熱微電漿治療反應的差異 6 2.3 國外非熱微電漿裝置kINPen® MED之臨床試驗 7 2.4 GPSR_M2第一期首次人體臨床試驗 9 2.5 視覺型機械手臂概述 11 2.6 應用於醫療領域之機械手臂技術 12 2.7 機械手臂控制系統 14 2.8 機械手臂驗證方法 15 2.9 研究目的 17 3 第三章 材料與方法 19 3.1 非熱微電漿裝置 19 3.2 首次人體臨床試驗 20 3.2.1 臨床個案治療流程 21 3.2.2 試驗各階段規則說明 22 3.2.3 臨床資料之分析方法 24 3.3 仿醫生操作之機械手臂電漿治療系統 25 3.3.1 系統硬體 26 3.3.2 機械手臂末端執行器 28 3.3.3 電漿頭移動流程說明 30 3.4 仿醫生操作之機械手臂電漿治療系統精度測試驗證 31 3.4.1 雙電漿機構之結構驗證與操作精度評估 32 3.4.2 定位與操作精度驗證流程 34 3.5 非熱微電漿源參數量測 35 3.5.1 電漿源溫度量測 36 3.5.2 電漿物種發射光譜量測 37 3.5.3 電漿紫外光輻射量測 37 3.6 基於醫生手部動作的機械手臂運動軌跡 38 3.6.1 醫師手部軌跡擷取方法 38 3.6.2 機械手臂軌跡模擬與分析 39 4 第四章 臨床試驗結果與討論 40 4.1 臨床試驗修正案 40 4.1.1 TFDA第二次修正案 40 4.1.2 IRB修正案 45 4.1.3 TFDA第三次修正案 46 4.1.4 臨床試驗修正案討論 46 4.2 個案傷口評估及描述 46 4.2.1 電漿治療組傷口評估 47 4.2.2 氣吹對照組傷口評估 50 4.2.3 個案傷口與修正案比對分析 53 4.2.4 個案傷口評估及描述討論 54 4.3 臨床試驗安全性及部分有效性評估 54 4.3.1 安全性評估 55 4.3.2 傷口表面積統計分析 55 4.3.3 傷口細菌結果及發生率 59 4.3.4 臨床試驗安全性及部分有效性評估討論 63 4.4 臨床試驗綜合討論 64 5 第五章 智慧電漿慢性傷口治療系統驗證 66 5.1 末端執行器測試 66 5.1.1 雙電漿機構與高度差的必要性 66 5.1.2 機構應力分析 68 5.1.3 驗證機構 70 5.1.4 末端執行器綜合討論 71 5.2 仿醫生操作之機械手臂電漿治療系統精度測試 72 5.2.1 仿醫生操作之機械手臂電漿治療系統之工作距離驗證 72 5.2.2 仿醫生操作之機械手臂電漿治療系統之操作精度評估 73 5.2.3 仿醫生操作之機械手臂電漿治療系統移動速度驗證 75 5.2.4 仿醫生操作之機械手臂電漿治療系統總體精度討論 76 5.3 電漿源特性分析 76 5.3.1 臨床參數下之電漿源溫度 77 5.3.2 單一電漿治療組數與溫度穩定性 78 5.3.3 電漿源激發物種 80 5.3.4 紫外線量測結果 82 5.3.5 電漿源特性綜合討論 83 5.4 基於醫師手部動作的機械手臂運動軌 83 5.4.1 醫師手部移動軌跡 83 5.4.2 機械手臂模擬結果 85 5.4.3 醫師與機械手臂軌跡比較 86 5.4.4 基於醫師手部動作的機械手臂運動軌跡之討論 87 5.5 仿醫生操作之機械手臂電漿治療系統綜合討論 88 結論 89 未來展望 90 參考文獻 91 附錄 100

    [1] F.L. Tabares, and I. Junkar, "Cold plasma systems and their application in surface treatments for medicine," Molecules, vol. 26, no. 7, 2021.
    [2] N.K. Kaushik, N. Kaushik, N.N. Linh, B. Ghimire, A. Pengkit, J. Sornsakdanuphap, S.J. Lee, and E.H. Choi, "Plasma and nanomaterials: Fabrication and biomedical applications," Nanomaterials, vol. 9, no. 1, 2019.
    [3] V. Nehra, and A. Kumar, "Atmospheric Non-Thermal Plasma Sources,"pp. 53–68, 2008.
    [4] S. Sharma, and R. k. Singh, "Cold plasma treatment of dairy proteins in relation to functionality enhancement," Trends Food Sci Technol, vol. 102, pp. 30–6, 2020.
    [5] F. Rezaei, P. Vanraes, A. Nikiforov, R. Morent, and N. De Geyter, "Applications of plasma-liquid systems: A review," Materials, vol. 12, no. 7, 2019.
    [6] S. Mumtaz, R. Khan, J.N. Rana, R. Javed, M. Iqbal, E.H. Choi, and I. Han, "Review on the Biomedical and Environmental Applications of Nonthermal Plasma," Catalysts, vol. 13, no. 4, 2023.
    [7] J. Šimončicová, S. Kryštofová, V. Medvecká, K. Ďurišová, and B. Kaliňáková, "Technical applications of plasma treatments: current state and perspectives," Appl Microbiol Biotechnol, vol. 103, no. 13, pp. 5117–29, 2019.
    [8] C.C. Weng, J. Der Liao, H.H. Chen, T.Y. Lin, and C.L. Huang, "Capillary-tube-based oxygen/argon micro-plasma system for the inactivation of bacteria suspended in aqueous solution," Int J Radiat Biol, vol. 87, no. 9, pp. 936–43, 2011.
    [9] W.K. Huang, C.C. Weng, J. Der Liao, Y.C. Wang, and S.F. Chuang, "Capillary-tube-based micro-plasma system for disinfecting dental biofilm," Int J Radiat Biol, vol. 89, no. 5, pp. 364–70, 2013.
    [10] M.H. Ngo Thi, P.L. Shao, J. Der Liao, C.C.K. Lin, and H.K. Yip, "Enhancement of angiogenesis and epithelialization processes in mice with burn wounds through ROS/RNS signals generated by non-thermal N2/Ar micro-plasma," Plasma Processes and Polymers, vol. 11, no. 11, pp. 1076–88, 2014.
    [11] P.L. Shao, J. Der Liao, T.W. Wong, Y.C. Wang, S. Leu, and H.K. Yip, "Enhancement of wound healing by non-thermal N2/Ar micro-plasma exposure in mice with fractional-CO2-laser-induced wounds," PLoS One, vol. 11, no. 6, 2016.
    [12] P.L. Shao, J. Der Liao, S.C. Wu, Y.H. Chen, and T.W. Wong, "Microplasma treatment versus negative pressure therapy for promoting wound healing in diabetic mice," Int J Mol Sci, vol. 22, no. 19, 2021.
    [13] O. Boubaker, "Medical robotics," Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics, pp. 153–204, 2020.
    [14] J. Douissard, M.E. Hagen, and P. Morel, "The da Vinci Surgical System," Bariatric Robotic Surgery, pp. 13–27, 2019.
    [15] F. Pugin, P. Bucher, and P. Morel, "History of robotic surgery: From AESOP¯ and ZEUS¯ to da Vinci¯," J Visc Surg, vol. 148, no. 5, pp. e3–8, 2011.
    [16] C. Freschi, V. Ferrari, F. Melfi, M. Ferrari, F. Mosca, and A. Cuschieri, "Technical review of the da Vinci surgical telemanipulator," International Journal of Medical Robotics and Computer Assisted Surgery, vol. 9, no. 4, pp. 396–406, 2013.
    [17] B. Stratmann, T.C. Costea, C. Nolte, J. Hiller, J. Schmidt, J. Reindel, K. Masur, W. Motz, J. Timm, W. Kerner, and D. Tschoepe, "Effect of Cold Atmospheric Plasma Therapy vs Standard Therapy Placebo on Wound Healing in Patients with Diabetic Foot Ulcers: A Randomized Clinical Trial," JAMA Netw Open, vol. 3, no. 7, 2020.
    [18] 曾莞心, "常壓非熱微電漿裝置對糖尿病足傷口作用之臨床前及臨床試驗申請," 國立成功大學材料科學及工程學系, 2023.
    [19] 魏妤涵, "非熱微電漿裝置對糖尿病足首次人體臨床試驗及人類角質與纖維母細胞共培養模型之評估," 國立成功大學材料科學及工程學系, 2024.
    [20] J. Gremark Simonsen, A. Axmon, C. Nordander, and I. Arvidsson, "Neck and upper extremity pain in sonographers – Associations with occupational factors," Appl Ergon, vol. 58, pp. 245–53, 2017.
    [21] B. Ghimire, G.J. Lee, S. Mumtaz, and E.H. Choi, "Scavenging effects of ascorbic acid and mannitol on hydroxyl radicals generated inside water by an atmospheric pressure plasma jet," AIP Adv, vol. 8, no. 7, 2018.
    [22] H. Sies, and D.P. Jones, "Reactive oxygen species (ROS) as pleiotropic physiological signalling agents," Nat Rev Mol Cell Biol, vol. 21, no. 7, pp. 363–83, 2020.
    [23] S. Das, V.P. Gajula, S. Mohapatra, G. Singh, and S. Kar, "Role of cold atmospheric plasma in microbial inactivation and the factors affecting its efficacy," Health Sciences Review, vol. 4, pp. 100037, 2022.
    [24] C.Y. Wu, J. Der Liao, C.H. Chen, H. Lee, S.H. Wang, B.H. Liu, C.Y. Lee, P.L. Shao, and E. Li, "Non-thermal reactive n2/he plasma exposure to inhibit epithelial head and neck tumor cells," Coatings, vol. 11, no. 11, 2021.
    [25] H. Wu, Y. Zhang, Y. Zhou, Z. Yan, J. Chen, T. Lu, and W. Song, "Low-Dose Non-Thermal Atmospheric Plasma Promotes the Proliferation and Migration of Human Normal Skin Cells," Applied Sciences (Switzerland), vol. 13, no. 5, 2023.
    [26] H.N. Wilkinson, and M.J. Hardman, "Wound healing: Cellular mechanisms and pathological outcomes," Advances in Surgical and Medical Specialties, pp. 341–70, 2023.
    [27] S. Bekeschus, T. von Woedtke, S. Emmert, and A. Schmidt, "Medical gas plasma-stimulated wound healing: Evidence and mechanisms: Mechanisms of gas plasma-assisted wound healing," Redox Biol, vol. 46, 2021.
    [28] M.S. Mann, R. Tiede, K. Gavenis, G. Daeschlein, R. Bussiahn, K.D. Weltmann, S. Emmert, T. von Woedtke, and R. Ahmed, "Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED," Clin Plasma Med, vol. 4, no. 2, pp. 35–45, 2016.
    [29] R. Tiede, S. Emmert, and G. Isbary, "Treatment of ulcerations and wounds," Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application, pp. 127–49, 2018.
    [30] V. Hahn, R. Brandenburg, and T. von Woedtke, "DIN SPEC 91315: A first attempt 35 to implement mandatory test protocols for the characterization of plasma medical devices," Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application, pp. 511–6, 2018.
    [31] E. Timmermann, R. Bansemer, T. Gerling, V. Hahn, K.D. Weltmann, S. Nettesheim, and M. Puff, "Piezoelectric-driven plasma pen with multiple nozzles used as a medical device: Risk estimation and antimicrobial efficacy," J Phys D Appl Phys, vol. 54, no. 2, 2021.
    [32] A. Lehmann, F. Pietag, and T. Arnold, "Human health risk evaluation of a microwave-driven atmospheric plasma jet as medical device," Clin Plasma Med, vol. 7–8, pp. 16–23, 2017.
    [33] N. Raissi-Dehkordi, N. Raissi-Dehkordi, H. Ebrahimibagha, T. Tayebi, K. Moeinabadi-Bidgoli, M. Hassani, and H. Niknejad, "Advancing chronic and acute wound healing with cold atmospheric plasma: cellular and molecular mechanisms, benefits, risks, and future directions," Front Med (Lausanne), vol. 12, 2025.
    [34] R. Ruhal, and R. Kataria, "Biofilm patterns in gram-positive and gram-negative bacteria," Microbiol Res, vol. 251, 2021.
    [35] M.A. Sharkey, A. Chebbi, K.A. McDonnell, C. Staunton, and D.P. Dowling, "Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments," Biointerphases, vol. 10, no. 2, pp. 029507, 2015.
    [36] K.D. Weltmann, and T. Von Woedtke, "Plasma medicine - Current state of research and medical application," Plasma Phys Control Fusion, vol. 59, no. 1, 2017.
    [37] S. Bekeschus, A. Schmidt, K.D. Weltmann, and T. von Woedtke, "The plasma jet kINPen – A powerful tool for wound healing," Clin Plasma Med, vol. 4, no. 1, pp. 19–28, 2016.
    [38] D. Evangelista, D. Allegro, M. Terreran, A. Pretto, and S. Ghidoni, "An Unified Iterative Hand-Eye Calibration Method for Eye-on-Base and Eye-in-Hand Setups," IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, vol. 2022-September, 2022.
    [39] I. Enebuse, M. Foo, B.S.K.K. Ibrahim, H. Ahmed, F. Supmak, and O.S. Eyobu, "A comparative review of hand-eye calibration techniques for vision guided robots," IEEE Access, vol. 9, pp. 113143–55, 2021.
    [40] G. Averta, C. Della Santina, G. Valenza, A. Bicchi, and M. Bianchi, "Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots," J Neuroeng Rehabil, vol. 17, no. 1, 2020.
    [41] A.O. Andrade, A.A. Pereira, S. Walter, R. Almeida, R. Loureiro, D. Compagna, and P.J. Kyberd, "Bridging the gap between robotic technology and health care," Biomed Signal Process Control, vol. 10, no. 1, pp. 65–78, 2014.
    [42] S. Ghidoni, M. Terreran, D. Evangelista, C. Eitzinger, S. Zambal, E. Villagrossi, N. Pedrocchi, N. Castaman, and M. Malecha, "A Smart Workcell for Human-Robot Cooperative Assembly of Carbon Fiber Parts,"
    [43] Y. Dai, C. Xiang, W. Qu, and Q. Zhang, "A Review of End-Effector Research Based on Compliance Control," Machines, vol. 10, no. 2, 2022.
    [44] M. Hwang, U.J. Yang, D. Kong, D.G. Chung, J.G. Lim, D.H. Lee, D.H. Kim, D. Shin, T. Jang, J.W. Kim, and D.S. Kwon, "A single port surgical robot system with novel elbow joint mechanism for high force transmission," International Journal of Medical Robotics and Computer Assisted Surgery, vol. 13, no. 4, 2017.
    [45] M.H.M. Ali, and M.R. Atia, "A lead through approach for programming a welding arm robot using machine vision," Robotica, vol. 40, no. 3, pp. 464–74, 2022.
    [46] G.S. Sharath, N. Hiremath, and G. Manjunatha, "Design and analysis of gantry robot for pick and place mechanism with Arduino Mega 2560 microcontroller and processed using pythons," Mater Today Proc, vol. 45, pp. 377–84, 2020.
    [47] Y. Wang, Y. Zhou, L. Wei, and R. Li, "Design of a Four-Axis Robot Arm System Based on Machine Vision," Applied Sciences (Switzerland), vol. 13, no. 15, 2023.
    [48] N. Patel, J. Yan, R. Monfaredi, K. Sharma, K. Cleary, and I. Iordachita, "Preclinical evaluation of an integrated robotic system for magnetic resonance imaging guided shoulder arthrography," Journal of Medical Imaging, vol. 6, no. 02, pp. 1, 2019.
    [49] M.K. Welleweerd, F.J. Siepel, V. Groenhuis, J. Veltman, and S. Stramigioli, "Design of an end-effector for robot-assisted ultrasound-guided breast biopsies," Int J Comput Assist Radiol Surg, vol. 15, no. 4, pp. 681–90, 2020.
    [50] C.J. Lin, H.C. Wang, and C.C. Wang, "Automatic Calibration of Tool Center Point for Six Degree of Freedom Robot," Actuators, vol. 12, no. 3, 2023.
    [51] M.J.T. Dy, J.B.O. Resurreccion, B.C.D. Santos, J.I.M. Venzon, E.B. Ang, V.P. Ibanez, M.C.E. Manuel, and J.F. Villaverde, "Design and Control of a Wireless Six Degree Freedom Robotic Arm," 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2021, 2021.
    [52] D. Filko, D. Marijanović, and E.K. Nyarko, "Automatic robot-driven 3d reconstruction system for chronic wounds," Sensors, vol. 21, no. 24, 2021.
    [53] D. Filko, and E.K. Nyarko, "2D/3D Wound Segmentation and Measurement Based on a Robot-Driven Reconstruction System," Sensors, vol. 23, no. 6, 2023.
    [54] 黃柏堯, "Evaluation of the effect of non-thermal micro-plasma on melanoma and its exosomes using a co-culture mod," 國立成功大學材料科學及工程學系, 2022.
    [55] D. Gidon, D. B. Graves, and A. Mesbah, "Model Predictive Control of Thermal Effects of an Atmospheric Pressure Plasma Jet for Biomedical Applications,"pp. 4889–94, 2016.
    [56] P. Kumar, S. Kumar, E.P. Udupa, U. Kumar, P. Rao, and T. Honnegowda, "Role of angiogenesis and angiogenic factors in acute and chronic wound healing," Plast Aesthet Res, vol. 2, no. 5, 2015.
    [57] D.C. Rosenberger, V. Blechschmidt, H. Timmerman, A. Wolff, and R.D. Treede, "Challenges of neuropathic pain: focus on diabetic neuropathy," J Neural Transm, vol. 127, no. 4, pp. 589–624, 2020.
    [58] S.T. Tan, and R. Dosan, "Lessons From Epithelialization: The Reason Behind Moist Wound Environment," Open Dermatol J, vol. 13, no. 1, pp. 34–40, 2019.
    [59] R. Murali, P. Singh, D. Ragunathan, R. Damarla, D. Kichenaradjou, K.M. Surriyanarayanan, S.K. Jayaram, H.C. Chandramoorthy, A. Kumar, M.E.G. Krishnan, and R.K. Gandhirajan, "Antimicrobial Activity of Cold Atmospheric Plasma on Bacterial Strains Derived from Patients with Diabetic Foot Ulcers," J Microbiol Biotechnol, vol. 34, no. 11, pp. 2353–61, 2024.
    [60] M. Lunder, S. Dahle, and R. Fink, "Cold atmospheric plasma for surface disinfection: a promising weapon against deleterious meticillin-resistant Staphylococcus aureus biofilms," Journal of Hospital Infection, vol. 143, pp. 64–75, 2024.
    [61] C.D. Cruz, S. Shah, and P. Tammela, "Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains," BMC Microbiol, vol. 18, no. 1, 2018.
    [62] A. Mai-Prochnow, M. Clauson, J. Hong, and A.B. Murphy, "Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma," Sci Rep, vol. 6, 2016.
    [63] G. Qiao, "Advanced Sensing Development to Support Robot Accuracy Assessment And Improvement," Proc IEEE Int Conf Robot Autom, vol. 2021-May, pp. 917–22, 2021.
    [64] J.C. Hsiao, K. Shivam, I.F. Lu, and T.Y. Kam, "Positioning Accuracy Improvement of Industrial Robots Considering Configuration and Payload Effects Via a Hybrid Calibration Approach," IEEE Access, vol. 8, pp. 228992–9005, 2020.
    [65] S. Tan, J. Yang, and H. Ding, "A prediction and compensation method of robot tracking error considering pose-dependent load decomposition," Robot Comput Integr Manuf, vol. 80, 2023.
    [66] H. Kihlman, R. Loser, K. Von Arb, and A. Cooke, "Metrology-integrated Industrial Robots-Calibration, Implementation and Testing,"pp. 23–6, 2004.
    [67] B. Li, W. Tian, C. Zhang, F. Hua, G. Cui, and Y. Li, "Positioning error compensation of an industrial robot using neural networks and experimental study," Chinese Journal of Aeronautics, vol. 35, no. 2, pp. 346–60, 2022.
    [68] Y.H. Lin, Y.C. Chen, K.S. Cheng, P.J. Yu, J.L. Wang, and N.Y. Ko, "Higher periwound temperature associated with wound healing of pressure ulcers detected by infrared thermography," J Clin Med, vol. 10, no. 13, 2021.
    [69] O. Flores, F. Castillo, H. Martinez, M. Villa, S. Villalobos, and P.G. Reyes, "Characterization of direct current He-N2 mixture plasma using optical emission spectroscopy and mass spectrometry," Phys Plasmas, vol. 21, no. 5, 2014.
    [70] C. Tauber, D. Schmoll, J. Gruenwald, S. Brilke, P.J. Wlasits, P.M. Winkler, and D. Wimmer, "Characterization of a non-thermal plasma source for use as a mass specrometric calibration tool and non-radioactive aerosol charger," Atmos Meas Tech, vol. 13, no. 11, pp. 5993–6006, 2020.
    [71] A. Sarani, A.Y. Nikiforov, and C. Leys, "Atmospheric pressure plasma jet in Ar and Ar/ H2 O mixtures: Optical emission spectroscopy and temperature measurements," Phys Plasmas, vol. 17, no. 6, 2010.
    [72] A. Qayyum, S. Zeb, M.A. Naveed, N.U. Rehman, S.A. Ghauri, and M. Zakaullah, "Optical emission spectroscopy of Ar-N2 mixture plasma," J Quant Spectrosc Radiat Transf, vol. 107, no. 3, pp. 361–71, 2007.
    [73] H. Su, A. Mariani, S.E. Ovur, A. Menciassi, G. Ferrigno, and E. De Momi, "Toward Teaching by Demonstration for Robot-Assisted Minimally Invasive Surgery," IEEE Transactions on Automation Science and Engineering, vol. 18, no. 2, pp. 484–94, 2021.
    [74] M. Baracca, G. Averta, and M. Bianchi, "A general approach for generating artificial human-like motions from functional components of human upper limb movements," Control Eng Pract, vol. 148, 2024.

    無法下載圖示 校內:2030-08-05公開
    校外:2030-08-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE