簡易檢索 / 詳目顯示

研究生: 黃靜慧
Huang, Chiang-Hui
論文名稱: 利用元始計算研究一些鋰鹽及鋰離子與聚醚基聚酉尿酯間Donor-Acceptor Interactions
Studies of Donor- Acceptor Interactions in Some Lithium Salts and Li-Polyether poly(urethane urea) by Ab Initio Calculation
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 101
中文關鍵詞: 鋰鹽聚醚基元始計算
外文關鍵詞: Donor, HF, Acceptor
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   利用LCBO-MO理論方法中Weinhold的天然鍵結軌域計算,軌域作用的穩定能,E(2)值,來分析〝高分子與鋰離子所形成的錯合物〞以及〝鋰鹽分子內部〞電子不定域化情形。在高分子內尿素與乙醚兩單元,計算出氧孤立對電子對與鋰離子作用的E(2)值分別為15.4 kcal/mol、5.76 kcal/mol。發現此乃由於鋰離子的存在使得尿素內部電子不定化程度變大(約多出265 kcal/mol),相反的,鋰離子配位於醚基的氧上,其內部電子不定域化程度反而會下降(22 kcal/mol)。因此,推論此鋰離子配位所產生的穩定能是鋰離子優先配位於尿素羰基氧上的原因。這樣的結果可以用來解釋文獻上聚醚基聚酉尿酯高分子鋰電池電解質的變溫7Li-NMR光譜分析。首先,隨著鋰離子濃度改變,鋰離子會先配位於尿素羰基的原上直到配位達飽和,鋰離子才會配位於醚基的氧上。其次,光譜中的兩個共振訊號分別為配位於高分子中尿素及乙醚的氧原子上Δδ = 0.70 ppm(計算Δδ = 0.54 ppm),當鋰離子配位在胺基中酸氧上的訊號,計算得到的Δδ為0.10 ppm,因此會埋入鋰離子配位在羰基的訊號中,而無法看到。所以上述E(2)值分析以及計算出的相對化學位移值(Δδ),可以解釋7Li NMR光譜。
      下列鋰鹽導電度趨勢依序為: LiN(SO2CF3)2> LiCF3SO3>LiClO4>LiPF6>LiBF4。由E(2)值之分析,發現LiPF6、LiBF4兩鋰鹽分別易分裂為(LiF+PF5)以及(LiF+BF3),形成接近中性的分子。更進一步研究其他三鋰鹽,其相對導電度之趨勢可由此三鹽類的陰離子內部非定域化能量來解釋, E(2)值分別為2028 kcal/mol ( N(SO2CF3)2-)、985 kcal/mol
    (CF3SO3-)、746 kcal/mol(ClO4-)。相對於CH3,CF3造成N(SO2CF3)2-、CF3SO3- 陰離子E(2)值分別增加452及158 kcal/mol,由此可看出含有CF3基的兩鋰鹽會因此拉電子基而使共振結構不定域化程度變大。此兩陰離子內的CF3基本身也有lp (F)→σ(C-F*) 非定化作用,其E(2)作用分別為 250及124 kcal/mol,此亦為含CF3基的鋰鹽具有較穩定的陰子,而呈現較高的導電度的原因。

      Orbital interaction energies for Li+ in polyether(urethane urea) and for five lithium salts have been calculated by LCBO-MO method, in which the BOs were
    constructed by the NBO method proposed by Weinhold. Analysis of values of E(2) indicates the stabilization of the lithium cation by the lone-paired electrons on oxygen
    atom is greater in the urea unit (15.4 kcal/mol) than the ether unit (5.76 kcal/mol).The magnitudes of total E(2) within the urea system is enhanced by265 kcal/mol due
    to the coordination of a lithium ion. On the other hand, the value of total E(2) is reduced from 152 to130 kcal/mol in ether unit by the lithium ion. The preference of
    the urea oxygen, regarding to the coordination site, may be better explained by the considerable stabilization energy found for the lithium-coordinated system. The
    conclusion drawn here can be employed to rationalize the reported 7Li-NMR recorded at various concentrations of the lithium ion. Firstly, the Li+ coordination on the ether
    unit was not found unless at higher concentration at which the urea oxygen could not tolerate more lithium ions. Secondly, the two major resonance signals obtained by
    two-component convolution were found with ∆δ=0.70 ppm, which is in good agreement with the calculated value, 0.54 ppm, in the present study. The third peak arising from the coordinated oxygen of carbamic acid was buried in the signal of the urea oxygen, since the calculated value of ∆δ is 0.10 ppm.
      The published trend of conductivity for the five lithium salts under this study is:LiN(SO2CF3)2> LiCF3SO3>LiClO4>LiPF6>LiBF4. The two least conductive salts are both calculated as two near neutral molecules, (LiF + PF5) and (LiF + BF3),respectively. This might explain their poor conductivities. Further investigation of
    orbital interactions for the other three salts reveals that the relative conductivity can be explained by delocalization energies within the anions: 2028 kcal/mol
    (N(SO2CF3)2-), 985 kcal/mo(CF3SO3-) and 746 kcal/mol(ClO4
    -). Moreover, we perform the same studies on CH3-replacement analogues: LiN(SO2CH3)2 and LiCF3SO3 .It is found that CF3 group results in an increased delocalization
    energies452 and158 kcal/mol , respectively. It is also informative that the CF3 group itself also provides, respectively,250and124 kcal/mol of delocalization energy. One can conclude that the CF3 group would stabilize the counter ion of Li+ by two mechanisms: the σ-withdrawing capability and the π-type orbital interactions, in
    which lone-paired electron(s) delocalized to the CF σ-antibonding orbitals.

    第一章、緒論…………………………………………………1 第二章、理論背景……………………………………………3 2-1 鋰電池之發展……………………………………………3 2-1-1 高分子鋰電池…………………………………………7 2-1-2 高分子電解質…………………………………………11 2-1-3 鋰鹽……………………………………………………14 2-2 理論計算前言……………………………………………17 2-3 量子化學…………………………………………………18 2-4 鋰鍵………………………………………………………19 2-5 核的簡介與四極核之性質………………………………21 2-5-1 電場梯度核四極偶合常數……………………………23 2-6 光譜參數…………………………………………………29 2-6-1核磁共振光譜儀…………………………………………29 2-6-2 碳遮蔽的理論…………………………………………29 2-6-3 區域逆磁性遮蔽………………………………………30 2-6-4 鄰近異方向遮蔽………………………………………31 2-6-5區域順磁性遮蔽…………………………………………31 第三章、計算方法……………………………………………33 3-1 計算流程…………………………………………………33 3-1-1 輸入座標建立與計算方法……………………………34 3-1-2計算的指令………………………………………………34 3-2 Gaussian 98 套裝軟體…………………………………34 3-3 元始計算…………………………………………………35 3-3-1 Hartree-Fock 自洽場理論.………………………36 3-3-2 限定自洽場與非限定自洽場計算方法………………38 3-4 天然鍵性軌域……………………………………………39 3-5 基底群……………………………………………………41 第四章、結果與討論…………………………………………46 4-1 金屬鋰鹽…………………………………………………46 4-1-1 鋰鹽相對導電度………………………………………47 4-1-2 自由陰離子內部主要電子不定域化能量……………50 4-1-3 鋰鹽中陰離子內部主要電子不定化能量……………51 4-2 聚醚基聚酉尿酯高分子單體……………………………51 4-2-1 分子幾何結構…………………………………………52 4-2-2 分子內部E(2)值分析…………………………………55 4-2-3 分子與鋰離子間作用力………………………………57 4-2-4 配位氧之電荷變化……………………………………59 4-2-5 電場梯度比較…………………………………………59 4-2-6 計算遮蔽常數值與7Li-NMR光譜化學位移之比較……60 4-2-7 鋰鍵之比…………………………………………………60 4-3 取代基的比較………………………………………………65 4-3-1 酉尿酯及聚氨酯內部作用E(2)變化……………………65 4-3-2 酉尿酯及聚氨酯與鋰離子間作用力………………………68 4-3-3 取代基分子之鋰離子相對遮蔽常數………………………70 4-3-4 聚醚基聚酉尿酯單體………………………………………71 第五章、結論………………………………………………………72 參考文獻……………………………………………………………98 表……………………………………………………………………74 圖……………………………………………………………………88

    1. (a) H.L. Wang, H.M. Kao, and T.C. Wen ; Macromolecules, 33 , 6910(2000).
    (b) H.L. Wang, H.M. Kao, and T.C. Wen ; Macromolecules , 34 , 529(2001).
    2. W.J. Hehre, L. Radom, P. v. R. Schleyer and J.A. Pople ; “Ab Initio Molecular Orbital Theory,” Canada (1986).
    3. a) A.E. Reed, F. Weinhold ; J. Am. Chem. Soc., 102 , 7211(1980).
    b) A.E. Reed, R.B. Weistock, F. Weinhold ; J. Chem. Phys., 83 , 735(1985).
    c) A.E. Reed, L.A. Curtiss and F. Weihold; Chem. Rev. 88(1988).
    4. F. M. Gray;“Solid Polymer Electrolytes: Fundamentals and Technological
    Applications,”VCH ,New York,USA(1991).
    5. a) S.S.C. Ammal and P. Venuvanalingam ; J. Chem. Phys.,107(1997).
    b) S.S.C. Ammal and P. Venuvanalingam ; J. Chem. Phys.,109 ,9820(2001).
    6. 林振華.林振富編譯;“充電式鋰離子電池材料與應用”Chap.12(2001).
    7. 孫清華編譯;“可充電電池技術大全”Chap.8(2003).
    8. 姚慶意;“高分子鋰電池”工業材料122期,117(1992).
    9. P.V. Wright, D.E. Fenton, J.M. Parke ; Polymer, 14 , 589(1973).
    10. M. Armand, J. M. Chabagno, and M. Duclot ;“Second International
    Meeting on Solid Electrolytes, ”St. Andrews, Scotland, Extended Abstracts (1978).
    11. C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, P. Rigaud ; Solid State Ionics, 11 , 91(1983).
    12. D.F. Shriver, M.A. Ratner ; Chem. Rev., 4 , 245(1988).
    13. M.G. Fiona ; “Solid Polymer Electrolyte: fundamentals and technological
    applications,”Chap.6, p95,(1997).
    14.楊家諭、鄭程鴻、邱永城 ; “鋰離子二次電池電解質介紹,” 工業材料110期
    ,p.82(1996).
    15. D.J. Bannister, G.R. Davies, I.M. Ward and J.E. McIntyre ; Polymer, 25 ,1291(1984).
    16. J. Barthel and H.J. Gores: in Handbook of Battery Materials, J. O.Besnhard
    , Editor, Wiley-VCH, Weinheim, Ch.7 (1999).
    17. H.H. Horowitz, J.I. Haberman, L.P. Kleman, G.H. Newman, E.L. Srogrynand T.A.Whitney ; “Proc. Symp. on Lithium Batteries,” 81-4 ,The Electrochemical Society,131(1981).
    18. A.M. Andersson, M. Herstedt, A. G. Bishop, and K. Edstrom ; Electrochimica Acta,
    47, 1885(2002).
    19. a) S.H .Strauss ; Chem. Rev., 93 , 927(1993).
    b) A.J. Lupinetti and S.H. Strauss ; Chemtracts-Inorg. Chem., 11 ,565(1998).
    20. P. Biensan,et al. ; “On safety of lithium-ion calls.Journal of Power Sources, ” 81-82:882(1999).
    21.劉東昇 ; 化學量子力學, Ch.3(1998).
    22. I.N. Levine, “Quantum Chemistry, ”4th ed., Prentice Hall, New York, (1991).
    23. R. McWeeny ; ”Coulson’s Valence,”3rd Ed,Oxford University Press,New York(1979).
    24. P.A. Kollman, J.F .Liebman and L.C. Allen ; J. Am. Chem. Soc., 92 ,1142(1970).
    25. B.S. Ault and G.C. Pimental ; J. Phys. Chem., 79 ,621(1975).
    26.a) P.A. Kollman, C.F. Bender and S. Rothenberg ; J.Am. Chem. Soc., 94 ,8016(1972).
    b) J. Rychlewski and J.R. Sabin ; Chem. Phys. Lett., 37 , 180(1976).
    c) G.V. Kulkarni and C. N. R. Rao ; J. Mol. Struct., 100 , 531(1983).
    d) Z. Latajka and S. Scheiner ; J. Chem. Phys., 81 , 4014(1984).

    27. a) M.L. Martin, J.J. Delpueh and J.G. Martin ; “Practical NMR Spectroscopy, ”
    Heyden and Sons, Ltd., London (1980).
    b) T.C. Farrar and E.D. Becker ; “Pulse and Fourier Transform NMR.Introduction to Theory and Methods,” Academic Press: New York (1971).
    28. E.A.C. Lucken ; “Nuclear Quadrupole Coupling Constants,” Academic Press:New York(1969).
    29. R.S. Drago ; “Physical Methods for Chemists,” 2nd Ed., Mexico, Chap 14. (1992).
    30. a) E. Schmp and P.J. Bray ; P.J. Ed., in “Physical Chemistry An Advance Treatise,”
    6th Handerson Ed., McGraw-Hill, New York(1955).
    b) T.P Das and E.L. Hahn ; “Nuclear Quadrupole Resonance Spectroscopy,” Academic Press: New York(1958)
    c) E.A. C Lucken ; “Nuclear Quadrupole Coupling Constants,” Academic Press:New York(1969)
    31. a) E. Schemp and P.J. Bray ; ed. In “Physical Chemistry An Advance Treatise,”6th Handerson Ed., McGraw-Hill, New York, Chap. 11(1955).
    b) H. Negita and P. Bray ; J. Chem. Phys., 33 , 1876(1960).
    c) E.A.C. Luken ; “Nuclear Quadrupole Resonance Spectroscopy, ” Academic Press, New York (1958).
    32. J.C.E. Simpson ; J. Chem. Soc., 94(1946).
    33. a) K.S. Wang, D. Wang, K. Yang, M.G. Richmond and M. Schwartz ; Inorg.Chem., 34 , 3241(1995).
    b) S.P. Wang, M.G. Richmond and M. Schwartz ; J. Am. Chem. Soc., 114 ,7595(1992).
    c) S.P. Wang, P. Yuan and M. Schwartz ; Inorg. Chem., 29 , 484(1990).

    34. R.G. Barnes and W.V. Smith ; Phys. Rev., 93(1954).
    35. F.W. Wehrli, A.P. Marchand and S. Wehrli ; “Interpretation of Carbon-13 NMR Spectra,” 2nd Ed., Wiley, New York(1989).
    36. W.E. Lamb; Phys. Rev., 60 , 817(1941).
    37. H.M. McConnell ; J. Chem. Phys., 26 , 226(1957).
    38. J.A. Pople ; Proc. Roy. Soc., A1, 1038(1971).
    39. M. Karplus and J.A. Pople ; J. Chem. Phys., 38 , 2803(1963).
    40. S. Huzinaga ; “Gaussian Basis Sets for Molecular Calculations,” Elsevier,
    New York(1984).
    41. D. R. Hartree ; “The Calulation of Atomic Structures, ” Wiley, New York(1957).
    42. J.E. Huheey,E.A. Keiter,R.L. Keiter ; “Inorganic Chemistry, ” 4th ,Harper Collins College Publishers(1992).
    43. J.P. Birk ; “Chemistry, ” Houghton Mifflin Company,NewJersey(1994).
    44. M. Chalaris and J. Samios ; J. Molecul. Liq., 78 , 201(1998).
    45. B.T. Colegrove ; J. Phys. Chem. , 94 , 5593(1990).

    下載圖示 校內:2009-06-21公開
    校外:2009-06-21公開
    QR CODE