簡易檢索 / 詳目顯示

研究生: 范愷軍
Fan, Kai-Chun
論文名稱: 地下水水氡濃度異常下降及地震前兆機制之研究:東台灣2003Mw6.8成功地震
A Mechanism for Anomalous Decline in Radon Precursory to 2003 Mw6.8 Chengkung Earthquake: Eastern Taiwan
指導教授: 郭明錦
Kuo, M. C. Tom
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 119
中文關鍵詞: 氡-222地下水地震前兆氣體飽和度
外文關鍵詞: Radon-222, ground-water, earthquake precursor, gas saturation
相關次數: 點閱:163下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 東台灣成功地區於2003年12月10日發生地震矩規模(Mw) 6.8之地震,為1951年來最強烈的一次。自2003年7月起在花蓮玉里安通溫泉區建立地下水水氡(Rn-222)監測站。此監測站位於2003年成功地震震央24公里處鄰近池上斷層,為現今歐亞板塊及菲律賓海板塊之交界處。2003年成功地震發生前約65天,地下水水氡(Rn-222)濃度有異常下降變化,濃度由780 pCi/L下降至最低值330 pCi/L。

    安通溫泉區地質構造是由含破碎裂隙玄武岩及砂岩所組成,被泥岩包圍。地震前岩體膨脹產生新裂隙,地下水補注到新裂隙的速度遠低於新裂隙產生的速度,引起溶解於地下水中的氡氣逸出水相至新裂隙中的氣相。氡分配到氣相的行為可使用來解釋在2003年成功地震前,地下水中氡濃度異常下降的現象。為了支持這假設,進行氡的氣液兩相分配試驗。使用現地溫泉水在水溫60 ℃狀態下,探討氣體飽和度(gas saturation)與水氡濃度下降之關係。由試驗數據指出,地下水水氡濃度由780 pCi/L到330 pCi/L之異常下降是需要岩體裂隙增加並產生10%氣體飽和度(gas saturation)。

    The 2003 Chengkung earthquake of magnitude (Mw) 6.8 on December 10, 2003 was the strongest earthquake near the Chengkung area in eastern Taiwan since 1951. The Antung radon-monitoring station was located 24 km from the epicenter. Approximately 65 days prior to the 2003 Chengkung earthquake, precursory changes in the radon concentration of ground-water were observed. The radon anomaly was a decrease from a background level of 780 pCi/L to a minimum of 330 pCi/L.

    Mechanisms and geological conditions for interpreting anomalous decreases in ground-water radon prior to earthquakes are seldom discussed in the literature. The Antung hot spring is situated in a basaltic fractured block inside mudstone. Under such geological conditions, we made a hypothesis that the dilation of rock masses was produced at a rate faster than the recharge rate of pore water and gas saturation developed in rock cracks preceding the earthquake. Radon partitioning into the gas phase may explain the ground-water radon anomalous decrease precursory to the 2003 Chengkung earthquake. To support the hypothesis, vapor-liquid two-phase radon-partitioning experiments were conducted at formation temperature (60 ℃) using formation brine from the Antung hot spring. Experimental data indicated that the anomalous decrease of radon concentration from 780 pCi/L to 330 pCi/L required a developed 10 % rock cracks relative to water volume.

    目錄 中文摘要-----------------------I Abstract----------------------------II 致謝----------------------------III 圖目錄-----------------------------VI 表目錄-----------------------------IX 第一章 緒論---------------------------1 1-1 研究動機與目的--------------------1 1-2 研究方法與流程----------------------6 第二章 相關研究介紹與文獻探討-------------9 第三章 研究方法---------------------17 3-1 水氡分析方法-------------------17 3-2 實驗室品保品管-----------------------20 3-3 地下水水氡採樣方法-------------22 第四章 研究區域地質背景---------------24 4-1 池上斷層---------------------24 4-2 玉里地區地質背景-------------------28 4-4 安通溫泉水質------------------------33 第五章 2003年成功地震前水氡濃度異常變化----37 5-1 2003年12月10日成功地震前水氡濃度異常變化--37 5-2 氡相行為試驗---------------------40 5-3 水氡濃度異常變化和2003年成功地震關連性探討----------44 第六章 結論與建議 ------------------54 6.1 地下水氡濃度監測------------------54 6.2 結論 ------------------------56 6.3 建議------------------------57 參考文獻:-------------------------58 附錄A:------------------------64 A-1 安通地下水氡濃度監測站含水層水文參數監測方法---65 A-1-1 含水層水文參數監測--------------65 A-1-2 抽水試驗分析方法-------------------66 A-1-3 長期抽水試驗監測----------------69 A-1-4 Jacob直線分析--------------------73 A-2 安通溫泉吉祥地下水氡濃度監測站含水層水文參數監測結果77 附錄B:----------------------------81 簡歷----------------------------105 圖目錄 圖1-1 台灣板塊構造及陸弧碰撞之立體示意圖(Ernst,1982)--2 圖1-2 台灣活動斷層分布圖(中央地質調查所,2000)----3 圖2-1 體積膨脹模式(Scholz et al., 1973)-----10 圖2-2 Rn-222自U-238的衰變鏈(實線指Rn-222衰變至Pb-210主要途徑)-----------------12 圖2-3 日本兵庫縣阪神地震前後地下水氡濃度之變化(Igaraghi, G., 1995)---------------14 圖3-1 水氡標準溶液液態閃爍計數之典型圖譜----------------19 圖3-2 水氡分析實驗室品保品管歷線圖(背景值及校正因子)--21 圖4-1 安通地下水水氡監測站位置圖(Kuo et al., 2006b)(空心星號:為2003年主震;實心星號: 為1951年主震;實心三角形: 為安通地下水氡濃度監測站)---25 圖4-2 池上斷層地表斷層從1986年至2004年的位移量測之位移速率演化曲線(Lee et al., 2005)------27 圖4-3 安通溫泉氡濃度監測井(D1)位於海岸山脈附近之地質構造圖及剖面圖 (Q: Holocene deposits全新世沖積層,Lc: Lichi mélange利吉混合層,Plw: Paliwan Formation八裏灣層,Fsl: Fanshuliao Formation蕃薯寮層,Tls: Tuluanshan Formation都巒山層,Bl: Basaltic block玄武岩岩塊,D1: 安通地下水氡濃度監測站,①:為池上斷層或縱谷斷層;②:永豐斷層) (Kuo et al., 2006a)---------32 圖4-4 安通溫泉區4家溫泉旅館所擁有之溫泉井相對位置圖(公尺)-------------------35 圖5-1 安通溫泉吉祥水氡濃度監測站成功地震前後水氡濃度之異常變化(Kuo et al., 2006a)-----------38 圖5-2 安通溫泉吉祥水氡濃度監測站與2003-12-10地震矩規模MW6.8成功地震震央之相對位置及餘震分布圖(空心星號:為2003年主震;空心圓:為2003年餘震;實心星號: 為1951年主震;實心三角形: 為安通地下水氡濃度監測站;①:為池上斷層或縱谷斷層;②:永豐斷層)(Kuo et al., 2006a)----------------------39 圖5-3 在60℃時不同比例氣體飽和度及安通溫泉吉祥站地下水水氡濃度變化圖(Kuo et al., 2006a)-----43 圖5-4 玉里安通溫泉鄰近2003年7月至2004年4月雨量統計(中央氣象局)---------------46 圖5-5 玉里安通溫泉鄰近2003年7月至2004年4月大氣壓力統計(中央氣象局)----------------47 圖5-6 玉里安通溫泉鄰近2003年7月至2004年4月大氣溫度統計(中央氣象局)-----------------48 圖5-7 安通溫泉吉祥站地下水氡濃度監測站連續抽水水氡連續採樣----------------49 圖A-1 Level Troll 500型自動水位紀錄器-------------------70 圖A-2 安通溫泉區4家溫泉旅館所擁有之溫泉井配置圖(公尺)-72 圖A-3 吉祥B井2007/5/1所得抽水試驗數據執行Jacob直線分析--76 圖A-4 安通溫泉吉祥水氡濃度監測站地下含水層導水係數T(Transmissivity)-----------------79 圖A-5 安通溫泉吉祥水氡濃度監測站地下含水層儲水係數S(Storage Coefficient)-------------80 圖B-1 安通溫泉吉祥水氡濃度監測站吉祥A井生產能力---------82 圖B-2 安通溫泉吉祥水氡濃度監測站吉祥B井地下水水位監測---83 圖B-3 安通溫泉吉祥水氡濃度監測站鄰近地區雨量紀錄(2008/2/20前為玉里氣象站資料;2008/2/20後為明里氣象站資料)--------84 圖B-4 吉祥B井2007年6月地下水位記錄---------------------85 圖B-5 吉祥B井2007年7月地下水位記錄---------------------86 圖B-6 吉祥B井2007年8月地下水位記錄---------------------87 圖B-7 吉祥B井2007年9月地下水位記錄---------------------88 圖B-8 吉祥B井2007年10月地下水位記錄--------------------89 圖B-9 吉祥B井2007年11月地下水位記錄--------------------90 圖B-10 吉祥B井2007年12月地下水位記錄-------------------91 圖B-11 吉祥B井2008年1月地下水位記錄--------------------92 圖B-12 吉祥B井2008年2月地下水位記錄--------------------93 圖B-13 吉祥B井2008年3月地下水位記錄--------------------94 圖B-14 吉祥B井2008年4月地下水位記錄--------------------95 圖B-15 吉祥B井2008年5月地下水位記錄--------------------96 圖B-16 吉祥B井2008年6月地下水位記錄--------------------97 圖B-17 吉祥B井2008年7月地下水位記錄--------------------98 圖B-18 吉祥B井2008年8月地下水位記錄--------------------99 圖B-19 吉祥B井2008年10月地下水位記錄------------------100 圖B-20 吉祥B井2008年11月地下水位記錄------------------101 圖B-21 吉祥B井2008年12月地下水位記錄------------------102 圖B-22 吉祥B井2009年1月地下水位記錄-------------------103 圖B-23 吉祥B井2009年2月地下水位記錄-------------------104 表目錄 表3-1 安通溫泉吉祥水氡濃度監測站溫泉水化學組成分析-----23 表4-1 安通溫泉區溫泉旅館溫泉井井位---------------------34 表4-2 安通溫泉區4家溫泉旅館溫泉井水質分析(濃度ppm)----36 表5-1 2008年農曆年長時間抽水連續採樣工作記錄-----------50 表A-1 安通溫泉區溫泉旅館溫泉井井位---------------------71

    參考文獻:

    1. 王源、楊昭男、陳文山,經濟部中央地質調查所出版台灣地質圖說明書圖幅第四十八號,1992。
    2. 何春蓀,台灣地體構造的演變,中華民國經濟部,1982。
    3. 宋聖榮、劉佳玫,台灣的溫泉,台灣地理百科23,遠足文化,2003。
    4. 李建成、朱傚祖、安朔葉、胡植慶,台灣東部縱谷斷層的快速潛移特性及地震災害,2004年台灣活動斷層與地震災害研討會論文集,11-18,中華民國九十三年十月,國立成功大學,2004。
    5. 郭明錦、林志成、曾金芳、林德生、江崇榮、李振誥,蘭嶼核廢料貯存場附近含水層抽水試驗之分析,地下水調查分析與保育管理研討會論文集,台北市,民國八十一年,1992。
    6. 楊燦堯、宋聖榮、傅慶州、蘇春旭、劉聰桂、陳正宏,活動斷層地球化學監測現況與成果,2004年台灣活動斷層與地震災害研討會論文集, 120-137,中華民國九十三年十月,國立成功大學,2004。
    7. 游明聖,斷層活動所造成之災害-以民國四十年花蓮、台東地震為例,台灣博物,第十五卷,第二期,16-25,中華民國八十五年,1996。
    8. 顏宏元,地震前兆研究,2005年臺灣活動斷層與地震災害研討會論文集, 23-36,2005。
    9. 徐鐵良,台灣海岸山脈的利吉混同層,台灣省地質調查所彙刊,第二十五號,87-96,1976。
    10. Angelier, J., Chu, H.T. and Lee, J.C., Shear concentration in a collision zone: kinematics of the active Chihshang Fault, Longitudinal Valley, eastern Taiwan. Tectonophysics 274, 117–144, 1997.
    11. Angelier, J., Chu, H.T. Lee, J.C. and Hu, J.C., Active faulting and earthquake hazard: The case study of the Chihshang fault, Taiwan. J. Geodyn. 29, 151-185., 2000.
    12. Barsukov, V.L., Serebrennikov, V.S., Belyaev, A.A., Bakaldin,Y.A. and Aresnyeva, R.V., Some experience in unraveling geochemical earthquake precursors. Pure and Applied Geophysics 122, 157-163, 1985.
    13. Brace, W.F., Paulding, B.W.Jr. and Scholz, C., Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 71, no. 16, 3939-3953, 1966.
    14. Cooper, H.H. and Jacob, C. E., A generalized graphical method for evaluating formation constants and summarizing well field history. Am. Geophys. Union Trans. 27, 526-534, 1946.
    15. Chen, W.S., and Wang, Y., Geology of the Coastal Range, eastern Taiwan. Geology of Taiwan 7, 1996.
    16. Dobrovolsky, P., Zubkov, S.I. and Miachkin, V.I., Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics 117, 1025-1144, 1979.
    17. Ernst, W.G., Mountain-building and metamorphism, a case history from Taiwan: Manuscript, 1982.
    18. Freyer, K., Treutler, H.C., Dehnert, J. and Nestler, W., Sampling and measurement of Randon-222 in water. J. Environ. Radioactivity 37, no. 3, 327-337, 1997.
    19. Han, Y.L., Kuo, M.C.T., Fan, K.C., Chiang, C.J. and Lee, Y.P., Radon Distribution in Groundwater of Taiwan. Hydrogeology Journal 14, 173-179, 2006.
    20. Hauksson, E., Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis. J. Geophys. Res. 86, no. B10, 9397-9410, 1981.
    21. Hsu, T.L., Recent faulting in the Longitudinal Valley of eastern Taiwan. Mem. Geol. Soc. China 1: 95-102, 1962.
    22. Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M. and Sano, Y., Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269, no. 5220, 60-61, 1995.
    23. Igarashi, G., Tohjima, Y. and Wakita, H., Time-variable response characteristics of groundwater radon to earthquakes. Geophys. Res. Lett. 20, no. 17, 1807-1810, 1993.
    24. Jacob, C. E., Correction of drawdown caused by a pumped well tapping less than the full thickness of aquifer, in : Bentall, R. (Editor):Method of Determining Permeability, Transmissibility and Drawdown, U.S.G.S., Water-Supply Paper 1536-I, 272-282, 1963.
    25. King, C.Y., Azuma, S., Igarashi, G., Ohno, M., Saito, H. and Wakia, H., Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan. J. Geophys. Res. 104(B6), 13,073-13,082, 1999.
    26. Kuo, M.C.T., Fan, K., Kuochen, H. and Chen, W. A mechanism for anomalous decline in radon precursory to an earthquake. Ground Water 44, no. 5, 642-647, 2006a.
    27. Kuo, T., Fan, K., Kuochen, H., Han, Y., Chu, H. and Lee, Y., Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung Earthquake. Journal of Environmental Radioactivity 88, no. 1, 101-106, 2006b.
    28. Lee, J.C., Angelier, J., Chu, H.T., Hu, J.C., Jeng, F.S. and Rau, R.J. Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001. J. Geophys. Res. 108, no. B11, 2528-2548, 2003.
    29. Lee, J.C., Angelier, J., Chu, H.T., Hu, J.C. and Jeng, F.S., Monitoring active fault creep as a tool in seismic hazard mitigation: insights from creepmeter study at Chihshang, Taiwan. C.R. Geoscience 337, no. 13, 1200-1207, 2005.
    30. Liu, K.K., Yui, T.F., Yeh, Y.H., Tsai, Y.B. and Teng, T.L., Variations of radon content in groundwaters and possible correlation with seismic activities in northern Taiwan. Pure Applied Geophys. 122, 231-244, 1984/85.
    31. Liu, K.K., Teng, T.L., Hou, T.Y., Yeh, Y.H. and Tsai, Y.B., Continuous monitoring of radon emanation as an earthquake precursor at two hot springs in northern Taiwan, Preceedings of the ROC-JAPAN Joint Seminar on Mutiple Hazards Mitigation, National Taiwan University, Taipei, Taiwan, ROC, March 1985.
    32. Noguchi, M., New method of radon activity measurement with liquid scintillator. Radioisotopes 13, no. 5, 362-367, 1964.
    33. Noguchi, M. and Wakita, H., A method for continuous measurement of radon in groundwater for earthquake prediction. J. Geophys. Res. 82, no. 8, 1353-1357, 1977.
    34. Prichard, H.M., Venso, E.A. and Dodson, C.L., Liquid-scintillation analysis of 222Rn in water by alpha-beta discrimination. Radioactivity and Radiochemistry 3, no. 1, 28-36, 1992.
    35. Rogers, A.S., Physical behavior and geologic control of radon in mountain streams. U. S. G. S. Bulletin 1052-E, 1958.
    36. Roeloffs, E. A., Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res. 103, 869-889, 1998.
    37. Roeloffs, E., Radon and rock deformation. Nature 399, no. 6732, 104-105, 1999.
    38. Scholz, C.H., Sykes, L.R. and Aggarwal, Y.P. Earthquake prediction: A physical basis. Science 181, no. 4102, 803-810, 1973.
    39. Silver, P.G. and H. Wakita, A search for earthquake precursors. Science 273, no. 5271, 77-78, 1996.
    40. Snow, D.T., Rock fracture spacings, openings, and porosities. Journal of the Soil Mechanics and Foundation Division, ASCE 94, no. 94, 73-91, 1968.
    41. Theis, C. V., The relation between the lowering of the piezometric surface and the rate and duration of discharge of well using ground-water storage. Trans., American Geophysical Union 16, 519-524, 1935.
    42. Teng, T.L., Some recent studies on groundwater radon content as an earthquake precursor. J. Geophys. Res. 85, no. B6, 3089-3099, 1980.
    43. Thomas D., Geochemical Precursors to Seismic Activity. Pageoph 126, no. 2-4, 241-266, 1988.
    44. Torgersen, T., Benoit, J. and Mackie, D., Controls on groundwater Rn-222 concentrations in fractured rock. Geophys. Res. Lett. 17, no. 6, 845-848, 1990.
    45. Trique, M., Richon, P., Perrier, F., Avouac, J.P. and Sabroux, J.C., Radon emanation and electric potential variations associated with transient deformation near reservoir lakes. Nature 399, no. 6732, 137-141, 1999.
    46. Wakita, H., Nakamura, Y., Notsu, K., Noguchi, M. and Asada, T., Radon anomaly: A possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science 207, no. 4433, 882-883, 1980.
    47. Wakita, H., Igarashi, G. and Notsu, K., An anomalous radon decrease in groundwater prior to an M6.0 earthquake: A possible precursor?. Geophys. Res. Lett. 18, no. 4, 629-632, 1991.
    48. Wu, Y. M., Chen, Y. G., Shin, T. C., Kuochen, H., Hou, C. S., Hu, J. C., Chang, C. H., Wu, C. F., and Teng, T. L., Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan, Geophys. Res. Lett. 33, L02312, 2006a.
    49. Yang, T.F., Walia, V., Chyi, L.L., Fu, C.C., Chen, C.H., Liu, T.K., Song, S.R., Lee, C.Y. and Lee, M., Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiation Measurements. 40: 496-502, 2005.
    50. Yu, S.B., Jackson, D.D., Yu, G.K. and Liu, C.C., Dislocation model for crustal deformation in the Longitudinal Valley area, eastern Taiwan. Tectonophysics 183, 97-109, 1990.
    51. Yu, S.B. and Kuo, L.C., Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics 333, 199-217, 2001.

    下載圖示 校內:立即公開
    校外:2009-04-30公開
    QR CODE