| 研究生: |
陳昭雄 Chen, Chao-Hsuing |
|---|---|
| 論文名稱: |
以碳化鈮作為銅擴散阻擋層之熱穩定性研究 Investigation of Niobium Carbide as a Diffusion Barrier for Cu Metallization |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 碳化鈮 、阻障層 、銅製程 、過渡金屬 、碳化物 、後段製程 、阻擋層 、金屬連線 |
| 外文關鍵詞: | Transition Metal, Cu, Niobium Carbide, Barrier, Interconnection, Diffusion Barrier, Carbide, Copper, NbC |
| 相關次數: | 點閱:122 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在藉由物性及電性量測,就應用於銅金屬製程銅擴散阻擋層金屬–碳化鈮(NbC)進行熱穩定度分析。於實驗所使用之物性分析方法包括有XRD、 XPS、 SEM、 AES、 SIMS等,而於電性方面,則包括有片電阻和P+N接面二極體之反向漏電流之量測分析。
利用直流濺鍍設備及NbC(50-50 at%)靶,於通入氮氣且壓力保持在7.6×10-3 torr的真空條件下,沉積所得碳化鈮阻擋層其電阻係數約為1774μΩ-cm。針對Cu(200nm)/NbC/p+n-Si結構,當NbC阻擋層厚度分別為60nm、 30nm、 以及15nm三種厚度時,於N2環境熱處理30分鐘後,經由二極體漏電流的量測結果顯示,其熱穩定度或失效溫度(Failure temperature)分別為450°C、 400°C、及350°C。藉由SIMS進行試片之元素成分縱深分析得知,NbC阻擋層之故障機制主要係銅原子經阻擋層中晶界之擴散所構成,此一情形對較薄的阻擋層厚度(15nm)甚為明顯。再藉由AES縱深分析顯示,隨著熱處理溫度之提高,NbC阻擋層與銅金屬層間原子相互擴散行為隨之加劇,最後並導致兩層間之反轉現象(Layer Reversal)。配合XRD、SEM、及片電阻等分析,吾人發現在相同熱處理情況下,具有較厚NbC阻擋層(60nm)之試片其反轉現象遠較厚度較薄試片(15nm)者明顯。
為進一步提昇NbC層之失效溫度,我們嘗試於NbC沉積過程中進行氮摻雜。實驗結果顯示,在N2/Ar流量比(流量單位為sccm)分別為0.5/24及1/24所得之NbCN阻擋層,於60nm的厚度下,雖然阻擋層之電阻係數稍顯增加(約在2000~2700μΩ-cm之間),但其熱穩定溫度可提高至500°C。同時藉由XRD及SIMS進行成分縱深分析證實,適當之氮摻雜可使原NbC層晶界獲得填塞,銅擴散及層反轉現象均可有效改善。
In this thesis, electrical and physical analyses were used to investigate the performance of niobium carbide (NbC) as a diffusion barrier in Cu metallization. In our study, physical analysis including XRD, XPS, SEM, AES, and SIMS depth profile were employed. Electrical analyses based on sheet resistance analysis and leakage current measurement of p+n diodes were also utilized. The resistivity of NbC thin films deposited by a DC sputtering system was about 1774μΩ-cm. Both Cu(200nm)/NbC/Si and Cu(200nm)/NbC/p+n-Si were prepared and these samples were subjected to thermal annealing under N2 ambient for 30 min. According to leakage current measurement of the Cu(200nm)/NbC/p+n-Si diodes, the failure temperature of the 60nm-, 30nm-, and 15nm-thick NbC barrier layer sample was found to be of around 450°C, 400°C, and 350°C, respectively.
According to SIMS depth profile, the failure of the annealed samples was found being attributed to Cu diffusion through the grain boundaries inside the NbC layer. It is noted that, after thermal annealing at a temperature higher than the failure temperature, layer inversion between the top Cu layer and underneath NbC barrier layer occurred. As also verified by XRD and SEM, the layer inversion phenomenon is seen being much more apparent for the sample with thinner NbC layer.
To further improve the thermal performance of the NbC barrier layer, nitrogen doping was employed during NbC preparation. Our experiment reveals that, with an N2/Ar flow rate (both in sccm) ratio of 0.5/24 or 1/24, though the film resistivity was increased to be of around 2000μΩ-cm to 2700μΩ-cm, layer inversion phenomenon has been released, and was evident in XRD analysis. In addition, the failure temperature of the 60nm-thick sample has been increased to be of 500°C. As indicated by SIMS analysis, it is attributed to the fact that the incorporated nitrogen atoms will reside at the grain boundaries of the NbC layer, as a result, Cu diffusion has been effectively suppressed.
[1] X.W. Lin, Dipu Pramanik, “Future interconnect technologies and copper Metallization”, Solid State Technology October 1998, p63.
[2] Tom Seidel and Bin Zhao, “0.1μm Interconnect Technology Challenges and the SIA ROADMAP”, Advanced Metallization for future ULSI, 1996, p3.
[3] ShIN-PUU JENG, ROBERT H. HAVEMANN and MI-CHANG CHANG, “Process Integration and Manufacturability Issues for High Performance Multilevel Interconnect”, Advanced Metallization for Devices and Circuits-Science, Technology and manufacturability, 1994, p25.
[4] S. P. Murarka and R. J. Gutmann, “Advanced multiplayer metallization schemes with copper as interconnection metal”, Thin Solid Films, 1993, vol 236, p257-266.
[5] C.S. Hsiung, K. Hsieh, “Copper electroplating: Processing and Integration”, Taiwan UMC, Conference Proceedings ULSI XV Materials Research Society, 2000, p133-136.
[6] M.E. Gross, R. Drese, “Mechanistic Studies of the Room Temperature Recrystallization Electroplated Damascene Copper and Sputter-Deposited Copper”, Conference Proceedings ULSI XV Materials Research Society, 2000, p85-91.
[7] Haebum Lee, Sergey D. Lopatin, “Correlation of Stress and Texture Evolution During Self- and Thermal Annealing of Electroplated Cu Films”, 2000 IEEE, p114-116.
[8] C.S. Liu, S.L. Shue, “Effects of Copper Diffusion Barrier on Physical/Electrical Barrier Properties and Copper Preferred Orientation”, Taiwan TSMC, Conference Proceedings ULSI XV Materials Research Society, 2000, p265-269.
[9] Qing-Tang Jiang and Michael E. Thomas, “Recrystallization Effects in Cu Electrodeposits used in fine line Damascene Structures”, J. Vac. Sci. Technol. B 19(3), May 2001, p762-766.
[10] Yuri Lantasov, Roger Palmans, “New Plating Bath for Electroless Copper Deposition on Sputtered Barrier Layers”, Microelectronic Engineering, vol. 50, p441-447, 2000.
[11] T.G Snodgrass, J.L. Shohet, “A Statistical Analysis Copper Bottom Coverage of High-Aspect-Ratio Features Using Ionized Physical Vapor Deposition”, IEEE transactions on semiconductor manufacturing, vol. 15, no. 1, p30-38, 2002.
[12] Pascal Doppelt, Thomas H. Baum, “The chemical vapor deposition of copper and copper alloys”, Thin Solid Films, vol. 270, p480-482, 1995.
[13] S. Simon Wong, James S. Cho, “Reliability of chemically vapor deposition (CVD) copper interconnections”, Materials Chemistry and Physics, vol. 41, p229-233, 1995.
[14] Carter W. Kaanta, Susan G.Bombarder, “Dual Damascene : A ULSI Wiring Technonogy”, IEEE VMIC Conference, p144-152, 1991.
[15] P.C. Andricacos C. Uzoh, “Damascene Copper Electroplating for Chip Interconnections”, IBM J. Res. Develop. vol. 42 no. 5, p567-574, 1998.
[16] H. Ono, T. Nakano, “Diffusion barrier effects of transition metals for Cu/M/Si mulitlayers (M=Cr, Ti, Nb, Mo, Ta, W)”, Appl. Phys. Lett., vol. 64, p1511-1513,1994.
[17] Qing-Tang Joang, Rick Faust, “Investigation of Ta, TaN, TaSiN barriers for Cu interconnects”, IEEE IITC 1999, p125-127.
[18] Kow-Ming Chang, Ta-Hsun Yeh, “Amorphouslike chemical vapor deposited tungsten diffusion barrier for copper metallization and effects of nitrogen addition”, J. Appl. Phys. vol. 82, issue 3, p1469-1475, 1997.
[19] J. Baumann, T. Werner, “TiN diffusion barriers for copper metallization”, VAM’97 Materials for Advanced Metallization, p127, 1997.
[20] Eugene Ivanov, “Evaluation of tantalum silicide sputtering target materials for amorphous Ta-Si-N diffusion barrier for Cu Metallization”, Thin Solid Films, vol. 332, p325-328, 1998.
[21] J.S. Reid, E. Kolawa, M. A. Nicolet, “Evaluation of amorphous (Mo,Ta,W)-Si-N diffusion barriers for <Si>|Cu Metallizations”, Thin Solid Films, vol. 236, p319-324, 1993.
[22] Yoon-Jik Lee, Bong-Seok Suh, “Co-sputtering deposited Ta-Si diffusion barrier between Si and Cu : the effects of Si content on the barrier property”, Thin Solid Films, vol. 357, p237-241, 1999.
[23] Shui Jinn Wang, Hao Yi Tasi, “Characterization of sputtered Ta-C-N film in the Cu/Barrier/Si contact system”, Journal of Electronic Materials, vol.30, no. 8, p917-924, 2001.
[24] Shui Jinn Wang, Hao Yi Tasi, “A comparative study of sputtered TaCx and WCx films as diffusion barriers between Cu and Si”, Thin Solid Films, vol.394, p180-188, 2001.
[25] Shui Jinn Wang, Hao Yi Tsai, “Characterization of Tungsten Carbide as Diffusion Barrier for Cu Metallization”, Jpn. J. Appl. Phys., vol. 40, pp2642-2649, 2001.
[26] Dong Joon Kim, Yong Tae Kim, “Nanostructured Ta-Si-N diffusion barriers for Cu metallization”, J. Appl. Phys., vol. 82, no. 10, p4847-4851, 1997,
[27] Yoon-Jik Lee, Bong-Seok Shu, “Structural and chemical stability of Ta-Si-N thin film between Si and Cu”, Thin Solid Films, vol.320, p141-146, 1998.
[28] Shui Jinn Wang, Hao Yi Tsai, “Influence of Nitrogen Doping on the barrier properties of sputtered Tantalum Carbide Films for copper metallization”, Jpn. J. Appl. Phys., vol. 40, p6212-6220, 2001.
[29] Wen Luh Yang, Chi-Chang We, “Improving the Barrier Capability of Ta Films Against Cu Diffusion by N2, NH3, or N2O Plasma Treatment”, Symposium on Nano Device Technology 2001, p98-100.
[30] Si-Yeoul Jang, Sung-Man Lee, “Tantalum and niobium as a diffusion barrier between copper and silicon”, Journal of Materials Science: Materials in Electronics, vol. 7, p271-278, 1996.
[31] Hugh O. Pierson, “Handbook of Refractory Carbides and Nitrides”, Noyes Publications, New Jersey, U.S.A, 1996.
[32] N. Mattoso Filho, C. Achete, “Silicide formation and phase separation from Cu/Nb and Nb/Cu bilayers on silicon”, Thin Solid Films, vol. 220, p184-190, 1992.
[33] Chongmu Lee, Young-Hoon Shin, “Ta-Si-N as a diffusion barrier between Cu and Si”, Materials Chenistry and Physics”, vol. 57, p17-22, 1998.
[34] J.S. Reid, X. Sun, “Ti-Si-N diffusion barriers between silicon and copper”, IEEE Electron Device Letters, vol.15, no.8, p298-300, 1994.
[35] Masaki Uekubo, Takeo Oku, “WNx diffusion barriers between Si and Cu”, Thin Solid Films, vol. 286, p170-175, 1996.
[36] Wen Luh Yang, Wen-Fa Wu, “Barrier capability of TaNx films deposited by different nitrogen flow rate against Cu diffusion in Cu/TaNx/n+p junction diodes”, Solid-State Electronics, vol.45, p149-158, 2001.
[37] S. C. Sun, M. H. Tsai, “A comparative study of CVD TiN and CVD TaN diffusion barriers for copper interconnection”, IEDM 95, p461-463, 1995.
[38] Shui Jinn Wang, Hao Yi Tsai, Sun S. C., “Characterization of sputtered titanium carbide film as diffusion barrier for copper metallization”, Journal of the Electrochemical Society, vol.148, no.8, p563-568, 2001.