簡易檢索 / 詳目顯示

研究生: 張育綾
Chang, Yu-Ling
論文名稱: 人工智慧投資對台灣產業結構與能源使用影響之投入產出分析
An Input-Output Analysis of the Impact of Artificial Intelligence Investment on Taiwan’s Industrial Structure and Energy Use
指導教授: 吳易樺
Wu, Yi-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 79
中文關鍵詞: 人工智慧投入產出分析能源平衡表碳排放
外文關鍵詞: Artificial Intelligence, Input-Output Analysis, Energy Balance Sheet, Carbon Emissions
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球人工智慧技術迅速演進,AI已成為驅動產業升級與經濟轉型的重要引擎,亦帶動高效能運算、半導體製造與智慧應用加速成長。面對AI應用擴張所引發的電力需求與碳排放壓力,各國政府紛紛啟動政策因應。台灣作為全球半導體供應鏈關鍵基地,AI相關投資快速成長,對產業與能源結構帶來深遠影響。
    本研究聚焦於人工智慧投資對台灣經濟效益與能源使用之影響,採用投入產出分析法,結合行政院主計總處之產業關聯表與經濟部能源署能源平衡表,建構結合產業與能源的量化分析模型。研究設計四種AI投資情境,分別為「現況情境」、「政府政策推動情境」、「政策與國際企業雙驅動情境」與「極端資本集中情境」,以模擬不同投資規模下AI產業對國內產值、能源消耗與碳排放之影響。
    研究結果顯示,AI投資可有效帶動高附加價值部門如半導體、資訊服務與專業技術服務產值成長,預計在極端投資情境下,可創造6.2兆元以上產值,並推升全國電力需求約12%,相當於工業用電總量之22%。能源面部分,AI投資將集中拉高電力部門負荷,進而造成能源結構轉變與碳排放風險增加。若未導入節能或再生能源機制,CO₂年排放量恐將增加27百萬公噸以上,成為淨零目標實現之挑戰。
    整體而言,本研究建立一套結合經濟(Economy)、能源(Energy)與環境(Environment)三大面向的3E分析架構,提供政策單位評估AI投資擴張對經濟與能源永續發展的量化依據,亦可作為推動AI與電力政策整合、強化電力韌性與綠色轉型之參考方向。

    With the rapid advancement of artificial intelligence (AI), the technology has become a key driver of industrial upgrading and economic transformation, accelerating developments in high-performance computing, semiconductor manufacturing, and smart applications. As AI applications expand, the resulting surge in electricity demand and carbon emissions has prompted governments to adopt responsive energy and industrial policies. Taiwan, as a critical hub in the global semiconductor supply chain, is experiencing fast-growing AI-related investments that significantly affect its industrial and energy systems.
    This study assesses the impact of AI investment on Taiwan’s industrial structure and energy use through input-output analysis. By integrating Taiwan’s official Input-Output Tables and Energy Balance Sheet, a comprehensive model is developed to capture economic, energy, and environmental linkages. Four scenarios are simulated: (1) current situation, (2) government policy-driven investment, (3) combined public-private investment, and (4) extreme global capital concentration.
    Results show AI investment can significantly boost value-added sectors such as semiconductors, information services, and technical services. In the extreme case, AI-related output could exceed NT$ 6.2 trillion, while electricity demand may rise by 12%—equivalent to 22% of total industrial use. This surge could strain the power grid, shift the national energy structure, and raise CO₂ emissions by over 27 million metric tons, threatening Taiwan’s net-zero goals.
    Overall, this study offers a quantitative framework linking industrial growth, energy use, and environmental impact. The findings provide policymakers with data-driven insights for aligning AI investment with energy resilience and sustainability goals.

    摘要I 致謝VII 目錄VIII 圖目錄IX 表目錄X 第一章 緒論1 第一節 研究背景與動機1 第二節 人工智慧產業投資現況3 第三節 研究目的5 第四節 研究架構6 第二章 文獻探討8 第一節 人工智慧產業現況8 第二節 投入產出分析與應用10 第三章 研究方法與資料處理14 第一節 研究方法14 第二節 資料處理21 第三節 模擬情境設計與假設說明29 第四章 研究結果35 第一節 四情境整體帶動效果35 第二節 細部產業帶動效果39 第三節 不同AI投資類型對產業部門的帶動效果比較42 第五章 結果與建議47 第一節 產業與能源影響評估47 第二節 情境模擬評估與政策建議48 第三節 不同AI投資策略的整合性評估49 第四節 研究限制與未來研究方向49 參考資料52 附錄 各投資情境之結果56

    一、英文文獻
    1.CB Insights. (2024). AI 100: The most promising AI startups of 2024.
    2.CB Insights. (2024). State of AI: Q2’24 Report.
    3.Chui, M., Hazan, E., Roberts, R., Singla, A., & Smaje, K. (2023). The economic potential of generative AI.
    4.Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5-14.
    5.Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen? Energy Science & Engineering, 9(10), 1676-1687.
    6.Koopman, R., Powers, W., Wang, Z., & Wei, S. J. (2010). Give credit where credit is due: Tracing value added in global production chains (No. w16426). National Bureau of Economic Research.
    7.Leontief, W.W.(1941).The Structure of the American Economy, 1919-1929: An Empirical Application of Equilibrium Analysis.
    8.McKinsey & Company. (2024). The state of AI in 2024.
    9.McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12-12.
    10.McLennan, M. (2022). The global risks report 2022 17th edition. Cologny, Switzerland: World Economic Forum.
    11.Porter, M. E., & Heppelmann, J. E. (2015). How smart, connected products are transforming companies. Harvard Business Review, 93(10), 96-114.
    12.Raihan, A. (2023). A comprehensive review of artificial intelligence and machine learning applications in energy sector. Journal of Technology Innovations and Energy, 2(4), 1-26.
    13.Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., ... & Hassabis, D. (2020). Improved protein structure prediction using potentials from deep learning. Nature, 577(7792), 706-710.
    14.Spencer, T., & Singh, S. (2024). What the Data Centre and AI Boom Could Mean for the Energy Sector Analysis.
    15.Stanford Institute for Human-Centered Artificial Intelligence. (2025). The AI Index Report 2025.
    16.Strubell, E., Ganesh, A., & McCallum, A. (2020, April). Energy and policy considerations for modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 09, pp. 13693-13696).
    17.Wamba-Taguimdje, S. L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business process management journal, 26(7), 1893-1924.
    18.Wiebe, K. S., Harsdorff, M., Montt, G., Simas, M. S., & Wood, R. (2019). Global circular economy scenario in a multiregional input–output framework. Environmental Science & Technology, 53(11), 6362-6373.
    19.Wood, R., & Temursho, U. (2020). Input-output Decomposition Analysis: Review and an Application of Global Multi-region Structural Path Decomposition. IO pedia Research Paper, No. 04.
    20.World Economic Forum.(2025).The Future of Jobs Report 2025.
    21.IEA. (2023). World Energy Outlook 2023.
    22.IEA. (2025). AI is set to drive surging electricity demand from data centres while offering the potential to transform how the energy sector works.
    23.IEA. (2025).Energy and AI.
    二、中文文獻
    1.王塗發。「臺灣、韓國汽車工業關聯效果之比較研究」,台灣銀行季刊,39(2),108–133,1988。
    2.王塗發、楊浩彥、林幸君、賴金端。投入產出分析-理論與實務,2020。
    3.毛驤文。「美國製造業技術轉變的投入產出表分析──拜登基礎建設計畫之產出效果預測」,國立臺灣大學社會科學院經濟學系碩士論文,2021。
    4.主計總處。110年產業關聯統計編製報告,2024。
    5.台灣經濟研究院。2024 年臺灣早期投資趨勢年報,2024。
    6.林惠文、呂惠富。「臺灣運動產業之投入產出分析」。《體育學報》,50(S),61–78,2017。
    7.邢慕寰。「臺灣經濟的投入產出關係」,1968。
    8.林師模、張雅棠、林晉勗。「台灣出口品之能源及碳隱含量:投入產出結構分解分析」,《經濟論文叢刊》 46卷1期 Pp. 1-46,2018。
    9.國家發展委員會。2050淨零排放路徑與策略總說明,2022。
    10.國家科學及技術委員會。智慧機器人產業推動方案,2025。
    11.黃幼宜、張淑滿。「臺灣海洋經濟的產業關聯變化與群聚效果」,航運季刊,24(4),29–52,2015。
    12.楊恆軒。「以目標規劃建立最佳產業結構以達成節能減碳與經濟發展政策之研究」,國立清華大學工業工程與工程管理學系碩士論,2021。
    13.經濟部。112年度全國電力資源供需報告,2024。

    無法下載圖示 校內:2030-06-30公開
    校外:2030-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE