簡易檢索 / 詳目顯示

研究生: 許家睿
Hsu, Jia-Ruei
論文名稱: 拉曼散射量測與數值模擬應用於觸媒微管燃燒之研究
Laser Raman Measurement And Numerical Studies of Combustion in Catalytic Micro-tubes
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 138
中文關鍵詞: 微推進微能源白金觸媒微管拉曼散射數值模擬微機電技術
外文關鍵詞: Micro-propulsion, Raman scattering, Platinum catalytic micro-tube, Micro-power, Numerical simulation, MEMS technology
相關次數: 點閱:104下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微燃燒技術的研發及其於微能源與微推進等各種領域的開發應用,已成為世界各先進國家燃燒研究發展的新趨勢,以能源應用觀點,燃燒相較於傳統電池,具有高能量密度、低成本及低污染等優點,極具有開發之價值。
    然而在微小化過程中燃燒系統縮小化後將面臨許多問題,其中最重要的是反應熄滅(quench),其原因包含熱損失及自由基受壁面破壞的增加等,為了能夠克服這些問題,本論文的目的主要是應用觸媒降低反應之活化能,增加反應速率以克服熄滅的問題,使燃燒系統更有效的微小化。實驗主要以200μm、500μm及1000μm的白金觸媒微管進行測試,燃料則選用乾淨且易反應的氫氣作為研究的對象。此外,為能克服非介入式(non-intrusive)雷射光學於微系統中實驗量測的困難,拉曼散射(Raman Scattering)的雷射診測技術首次被應用於500μm觸媒微管近出口的量測,而相關的數值模擬也被用於了解觸媒微管內部的流場與反應情形。
    實驗結果發現:以觸媒可以成功的使燃料在小於反應熄滅半徑(quench diameter)之微管中穩定有效的反應,觸媒微管燃燒達穩定後,其微管出口之溫度將隨燃氣濃度、速度及管徑的增加而增加,500μm以上之管徑於高濃度高流速的操作條件下,藉由熱電偶量測與OH影像的拍攝,證實存在氣相反應於出口後段,而初步的實驗結果也證實在200μm管徑的操作條件下,則依然存在劇烈的壁面反應; 拉曼散射量測則可量測到微管出口的生成物濃度分布,其所得之結果包括水氣、氧氣、氮氣、氫氣與氫氧基之濃度分布,並將量測結果與熱電偶所量測的溫度進行比較,兩者最大偏差約為100K。
    數值模擬的結果則發現縮小管徑與降低流速都將有助於壁面燃料轉化率(conversion ratio)的提升,因為改變這些參數都將有助於反應物擴散至壁面的能力,為了能夠了解流速、管徑尺寸與燃氣濃度對於反應的影響,論文中將這些參數的影響以相對應的時間尺度(time scale)表示,分別為停滯時間(residence time)、擴散時間(diffusion time)與特徵反應時間(characteristic reaction time),經由分析發現在相關的操作條件下,特徵反應時間較其餘兩者為小,而停滯時間與擴散時間則較為接近,這將影響觸媒微管的反應效率。
    藉由實驗結果、數值模擬與簡單的能量守衡關係,可對於觸媒微管燃燒的反應特性進行描述,結果發現縮小管徑的過程中,因為受到表面積/體積比快速增加的效應,其合適的操作條件將趨向高流速與高濃度,其結果將引發時間尺度彼此競爭的問題,因此如何改善壁面的熱損失將是燃燒縮小化過程必須研究的重點之一。
    最後,希望未來能將相關的微管觸媒燃燒研究成果搭配微機電製程技術,以設計完整的微能源或微推進系統,並將這項燃燒新技術應用於微機電系統或微微衛星,使其更具有實用性。

    The development of micro-combustion technique and its application in micro-power and micro-propulsion systems have attract intensive research interests and become a new research area in the developed countries. Compared to traditional batteries, combustion has higher power density, lower cost and pollution. From the view point of energy utilization, it is a more relevant and attractive candidate for micro-power generation.
    However, in the process of reducing the scale of combustion devices to micro-sizes, one may have to face many unexpected new problems associated with the small size. One of the most important problems is the extinction of reaction related to “quench diameter”. Quench may induced from excessive heat loss and radical depletion on the wall. In this thesis, we propose a catalytic micro-reactor to overcome the quench problem by using catalyst to decrease the activation energy, increase the reaction rate and maintain intensive reaction on the catalyst surface of a reactor of size smaller than the quench diameter. In the experiments, 200μm, 500μm and 1000μm-diameter Pt catalytic micro tubes are tested. The fuel is Hydrogen which is clean and highly active. Laser Raman spectroscopy is used to measure the major species concentration and temperature at the exits of the micro tube. Numerical simulation is also used to study the flow and reaction characteristics inside the micro tubes.
    The experimental results show that the tube-exit temperature increases with fuel concentration, velocity and tube size at steady-state conditions. For the operational conditions at high fuel concentrations and velocities, obvious gas phase reaction behind the exit can be detected by thermocouple and laser induced fluorescence OH images. The results also show that intensive surface reaction still exists in the 200μm tube. Raman scattering technique is used to measure the distributions of species concentrations including H2O, O2, N2, H2, and OH and temperature at the tube exit. The temperature measured by Raman scattering and thermocouple has a general agreement with each other but with a maximum difference about 100K.
    Numerical simulation results show that smaller tube sizes and lower velocities would raise the conversion ratio on catalytic surface, because both enhanc the probability of surface species of H2 or O2 due to enhanced diffusion. In order to study the effects of fuel concentration, velocity, and tube size on reaction in the catalytic tube, different time-scales are used to characterize these effects. These time scales are the residence time, the diffusion time, and the characteristic reaction time. Analysis shows that for the cases and conditions studied here the characteristic reaction time is usually smaller than the other two, and the residence time can be close to the diffusion time. This result indicates that the geometry and operation conditions have significant influences on the efficiency and performance of the catalytic micro-tubes.
    The combustion/reaction characteristics in the catalytic micro-tubes can be characterized from the current experimental and numerical results of the cases of varying velocities, fuel concentrations and tube sizes. The results show that as tube size is decreased, the suitable operational range will sift to higher fuel concentrations and velocities with a smaller operational region as the operation range is bounded by the Q-point, which represents the stoichiometric and sonic conditions. Reducing the tube size will also lead to the competition of different time scales as well as enhancement of the heat loss through the surface. These factors are major issues in the design of a catalytic micro-reactor.
    Finally, these current results can serve as the basis for incorporation with MEMS technique for a completed micro-power and micro-propulsion system in a pico-satellite in the future.

    中文摘要………………………………………………………………………Ⅰ 英文摘要…………………………………………………...………………..Ⅳ 致謝………………………………………………………………………….Ⅶ 目錄…………………………………………………...………………….. VIII 表目錄………………………………………………………………………..Ⅹ 圖目錄…………………………………………………………...………….ⅩⅠ 第一章 緒論 ………………………………………………………………...1 1-1 前言……………………………………………………………..1 1-2 微小化所遭遇之問題…………………………………………..3 1-3 熄滅的問題……………………………………………………..5 1-4 微管觸媒燃燒的原理…………………………………………..6 1-5 研究動機………………………………………………………..8 第二章 文獻回顧…………………………………………………………...10 2-1 文獻回顧……………………………………………………....10 2-2 問題分析………………………………………………………16 2-3 研究目的………………………………………………….…...17 第三章 觸媒微管的初步理論分析……………………………………….20 3-1 觸媒微管的特性………………………………………………20 3-2 觸媒微管的流場分析…………………………………………21 3-3 觸媒微管的能量守恆…………………………….……...……25 3-4 時間尺度的效應…………………………………………..…28 第四章 實驗設備與方法………………………………………………….33 4-1 初步定性量測實驗…………………..………………………..33 4-1-1 實驗設備………………………………………………33 4-1-2 實驗方法與步驟………………………………………36 4-1-3 OH基螢光定性研究………………………………….40 4-2 觸媒微管量測技術開發-拉曼散射量測………………………41 4-2-1 拉曼散射之原理與簡介…………………………........41 4-2-2 拉曼散射量測之實驗設備……………………………42 4-2-3 拉曼散射量測之實驗步驟……………………………45 第五章 觸媒微管燃燒之數值模擬……………….………………………47 5-1 觸媒微管之數值模擬………………….…………………........47 5-2 化學反應模式………………………………………………….50 第六章 實驗與數值模擬之結果與討論………………………………….53 6-1 初步定性實驗結果…………………………………………….53 6-2 拉曼散射量測之實驗結果…………………………………….56 6-3 數值模擬之結果……………………………………………….62 6-4 結果討論……………………………………………………….69 第七章 結論與未來工作及展望………………………………………….73 7-1 結論…………………………………………………………….73 7-2 未來工作及展望……………………………………………….75 參考文獻…………………………………………………………………….77

    Cheng, T.S., Chao, Y.C., Wu, C.Y., Chen, G.B., Yuan, T., and Leu, T.S., (2003), “Raman-LIPF Measurement of Temperature, Major Species, and OH in a Laminar Hydrogen Jet Diffusion Flame,” 中華民國燃燒學會第十三屆學術研討會.
    Cooley, B.A., Walther, D.C. and Fernandez-Pello, A.C., (1999), “Exploring the Limits of Microscale Combustion,” Western States Section/The Combustion Institute.
    Christopher M. Spadaccini, Xin Zhang, Christopher P. Cadou, Norihisa Miki, and Ian Waitz, (2003), “Preliminary development of a hydrocarbon-fueled catalytic micro-combustor,” Sensors and Actuators A, vol. 103, pp.219-224.
    De Soete, (1967), “Stability and Propagation of Combustion Waves in Inert Porous Media,” Proceeding of Combustion Institute, vol. 11.
    Deutschmann, O., Schmidt, R., Behrendt, F., and Warnatz, J., (1996), “Numerical Modeling of Catalytic Ignition,” Proceeding of Combustion Institute, vol. 26, pp.1747-1754.
    Dibble, R.W., Stårner, S.H., Masri, A.R., and Barlow, R.W., (1990), “An Improved Method of Data Acquisition and Reduction for Laser Raman-Rayleigh and Fluorescence Scattering from Multispecies,” Applied Physics, vol.51, pp.39-43.
    Dimitrios C. Kyritsis, Ismael Guerrero-Arias, Subir Roychoudhury and Alessandro Gomez, (2002), “Mesoscale Power Generation by a Catalytic Combustor using Electrosprayed Liquid Hydrocarbons,” Proceeding of Combustion Institute, vol. 29.
    Fernandez-Pello, A. Carlos, (2002), “Micro-Power Generation Using Combustion : Issues and Approaches,” Proceeding of Combustion Institute, vol. 29.
    Griffiths, J.F., and Barnard, J.A., (1995), Combustion and Flame, 3rd ed., pp.36-37.
    Hardesty, D.R. and Weinberg, F.J., (1974), "Burners Producing Large Excess Enthalpies," Comb. Sci. and Tech, vol.8, pp.201.
    Hsing, I. Ming, Srinivasan, R., Harold, Michael P., Jensen, Klavs F., and Schmidt, Martin A., (2000), “Simulation of Micromachined Chemical Reactors for Heterogeneous Partial Oxidation Reactions,” Chemical Engineering Science, vol.55, pp.3-13.
    Ian A. Waitz, Gautam Gauba, and Yang-Sheng Tzeng, (1998), “Combustors for Micro-Gas Turbine Engines,” Journal of Fluids Engineering, vol.120, pp.109-117.
    Ikeda, H., Libby, P.A., and Williams, F.A., (1993), “Catalytic Combustion of Hydrogen-Air Mixtures in Stagnation Flows,” Combustion and Flame, vol. 93, pp.138-148.
    John, James E. A., (1984), Gas Dynamic, 2nd ed.,” Prentice-Hall, Inc., pp. 177-203.
    Kaoru Maruta, and Koichi Takeda, (2001), “Catalytic Combustion in Microchannel for MEMS Power Generation,” The 3rd Asia-Pacific Conference on Combustion, pp.219- 222.
    Kaoru Maruta, and Koichi Takeda, (2002), “Extinction Limits of Catalytic Combustion in Microchannels,” Proceeding of Combustion Institute, vol. 29.
    Klvas F. Jensen, (2001), “Microreaction Engineering – Is Small Better ?,” Chemical Engineering Science, vol.56, pp.293-303.
    Lars Sitzki, Kevin Borer, Ewald Schuster, and Ronny, Paul D., (2001), “Combustion in Microscale Heat-Recirculating Burners,” The 3rd Asia-Pacific Conference on Combustion, pp.473- 476.
    Reynolds, W.C., (1986), STANJAN program manual, 3rd ed., Stanford University.
    Ronny, Paul D., (2002), “Analysis of Non-adiabatic Heat-recirculating combustors,” Proceeding of Combustion Institute, vol. 29.
    Schefer, R.W., Robben, F., and Cheng R.K., (1980), “Catalyzed Combustion of H2/Air Mixtures in a Flat-Plate Boundary Layer: I. Experimental Results,” Combustion and Flame, vol.38, pp.51-63.
    Schneider, Steven J., Boyarko, George A., and Sung, Chih-Jen, (2003), “Catalyzed Ignition of Bipropellants in Microtubes,” the 41st Aerospace Science Meeting.
    Srinivasan, R., Firebaugh, S.L., Hsing, I-M., Ryley, J., Jensen, M.P., and Schmidt, M.A., (1997), “Chemical Performance and High Temperature Characterization of Micromachined Chemical Reactors,” International Conference on Solid-State Sensors and Actuators.
    Veser, G., Friedrich, G., Freygang, M.; Zengerle, (1999), “A Micro Reaction Tool For Heterogeneous Catalytic Gas Phase Reactions,” The 12th IEEE International Conference, pp.394-399.
    Veser, G., (2001), “Experimental and Theoretical Investigation of H2 Oxidation in a High-temperature Catalytic Microreactor,” Chemical Engineering Science, vol.56, pp.1265-1273.
    Vican, J., Gajdeczko, B.F., Dryer, F.L., Milius, D.L., and Aksay, I.A., (2002), “Development of a Microreactor as a Thermal Source for MEMS Power Generation,” Proceeding of Combustion Institute, vol. 29.
    Weinberg, F. J., Rowe, D.M., Min, G., and Ronney, P., (2002), “On Thermoelectric Power Conversion From Heat Re-circulation Combustion Systems,” Proceeding of Combustion Institute, vol. 29.
    Zamashchikov, V.V., (1995), “Combustion of Gases in Thin-walled Small-diameter Tubes,” Combustion, Explosion and Shock Waves, vol.31, pp.20-22.
    Zamashchikov, V.V., (1997), “Experimental Investigation of Gas Combustion Regimes in Narrow Tubes,” Combustion and Flame, vol.108, pp.357-359.
    Zamashchikov, V.V., (2001), “An Investigation of Gas Combustion in a Narrow Tube,” Combustion Science and Technology, vol.166, pp.1-14.
    吳得群, (2000), “應用線拉曼散射與雷射誘發預分解OH螢光技術探討漩渦噴流甲烷火焰之特性,” 國立成功大學航空太空工程學系博士論文.
    陳冠邦, (2002), “氣化生質能於白金蜂巢式反應器之觸媒燃燒研究,” 國立成功大學航空太空工程學系博士論文.
    許紘瑋, (1998), “觸媒穩駐燃燒之初步研究,” 國立成功大學航空太空工程學系碩士論文.

    蔡銘晃, (2000), “小型氣渦輪引擎觸媒燃燒室之設計,” 國立成功大學航空太空工程學系碩士論文.
    廖仁瑞, (2002), “微機電技術製作之白金觸媒反應系統的研發,” 國立成功大學航空太空工程學系碩士論文.
    鄭藏勝, 趙怡欽, 吳志勇, 陳冠邦, 袁曉峰, 呂宗行, (2003), “應用雷射診測技術於微反應系統之初步研究,” 中華民國燃燒學會第十三屆學術研討會.

    下載圖示 校內:2004-07-04公開
    校外:2004-07-04公開
    QR CODE