| 研究生: |
彭勝光 Peng, Sheng-Kuang |
|---|---|
| 論文名稱: |
有機非揮發性記憶體的物理機制研究 The study of physical mechanisms in organic non-volatile memory devices |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 有機半導體 、有機記憶體元件 、pn異質接面 、不連續結構 、孔洞結構 、磁性有機半導體 、室溫鐵磁性 、結構可撓性 |
| 外文關鍵詞: | Organic semiconductor thin film, organic field-effect transistor, memory devices, nano-p-n junctions, room-temperature ferromagnetism, ferromagnetic semiconductor, nano-pentacene, incomplete layer, memory windows, polymer semiconductor, stored charge, switching behavior, Ni-doped, spin coupling, spintronics |
| 相關次數: | 點閱:131 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最近幾十年來,有機材料因為其具有結構的可撓性而引起廣泛的研究,同時其亦具有製作成本低和製程溫度低等特性,已成為新興的熱門研究領域。本論文針對有機異質結構應用於有機半導體材料以及磁性粒子摻雜於有機半導體材料的物理機制研究可以分為三個部份,第一個部份為於N型有機半導體層中嵌入不連續結構之P型有機半導體材料,形成具有n-p-n異質接面的主動層,並應用於有機記憶體元件中的物理機制研究。第二個部份為利用不同溶劑製程形成具有各種孔洞結構的P型有機半導體層,以及加入N型有機半導體材料形成具有p-n異質接面的主動層,並應用於低操作電壓之有機記憶體元件中的物理機制研究。第三個部份為利用MBE儀器共蒸鍍P型有機半導體材料和磁性粒子,並改變材料的成長溫度形成不同的磁性有機半導體層。
本論文的第一部份是利用N型有機材料N,N-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13)及P型有機材料pentacene,透過製作PTCDI-C13/pentacene/PTCDI-C13異質結構的複合有機半導體層於有機記憶體元件中來改變其駐極體層及有機半導體層界面間的載子陷阱條件,並探討其對載子的捕獲及釋放能力的影響以及其中的物理機制,最終改善元件的載子清除能力,進而提升其記憶窗口等電特性。本研究發現成長2及5 nm的pentacene於2.5 nm的PTCDI-C13上時是承現類似島狀結構的晶體,這種結構有效降低載子被複合的機率使之仍然顯示出N型有機記憶體元件的特性,這說明元件通道中的電子可以在n-p-n異質接面結構與駐極體層及有機半導體層界面中有效的傳輸;同時由於具有pn異質接面,使得有機記憶體元件於清除操作的照光過程中能有效的解離電子電洞對並產生激子,而且電洞載子亦會被保留於島狀結構中,因此能增加其有機半導體層中的電洞載子濃度,這顯示出有更多的電洞能夠被提供進而改善元件的清除能力,使得有機記憶體元件的記憶窗口成功的被提升並達到48.9 V。
本論文的第二部份是使用P型有機材料poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-C14)及介電材料poly(methyl methacrylate) (PMMA),利用PBTTT-C14與PMMA兩種材料不相溶的特性,使得PMMA在成膜時會聚集進而形成具有孔洞結構的有機半導體層,並應用於小偏壓有機記憶體元件中,再透過不同孔洞大小來探討其對於載子的捕獲能力影響;此外,再透過加入一層8 nm 的PTCDI-C13於孔洞結構中來形成PTCDI-C13/pentacene異質結構的複合有機半導體層,探討其對載子的釋放能力影響以及其中的物理機制。本研究發現小偏壓有機記憶體元件中具有孔洞結構的有機半導體層的孔洞直徑大小增加會使得其駐極體及有機半導體層界面間的載子陷阱數量有效的提升,這說明元件通道中的電洞載子在寫入操作的過程中會有效的被捕獲在載子陷阱中,進而使得元件的寫入能力提升;而具有pn異質接面的複合有機半導體層,因其能有效的提升元件於清除操作的照光過程中光生激子的解離效率,並將電子載子保留於PTCDI-C14薄膜中,這顯示出在清除操作時使用同樣強度的照光,具有PTCDI-C14的元件能夠被提供更多的電子進而提升元件的清除能力,使得小偏壓有機記憶體元件的記憶窗口成功的被提升並達到1.64 V。
本論文的第三部份是關於具有室溫鐵磁性的磁性有機半導體及其物理機制研究,對於未來於柔性自旋電子元件的研究及應用上,磁性有機半導體薄膜能夠同時具備結構的可撓性和室溫鐵磁性是具有極大的研究價值的。因為迄今為止對於磁性有機半導體的物理機制尚不清楚,而過去所發表的文獻亦十分的缺乏,尤其是對於居理溫度在室溫以上的磁性有機半導體薄膜的研究更是稀少。在這種情況下,本研究將微量的磁性粒子Ni以共蒸鍍的方式摻雜於pentacene中來製作出磁性有機半導體薄膜,觀察Ni摻雜的pentacene薄膜在室溫下的鐵磁性反應;我們還透過調控基板的溫度來影響磁性粒子及有機分子於基板上的成膜條件,製作出具有不同晶體大小的磁性有機半導體薄膜,並通過原子力顯微鏡和穿透式電子顯微鏡分析其表面形貌及結構;接著通過低掠角薄膜繞射、拉曼光譜、磁力顯微鏡和理論模擬分析並證明磁性原子於有機分子間的自旋耦合作用力的存在,提出有機分子的π電子離域可以幫助鎳原子中d軌域的自旋耦合傳遞,因此磁性原子間會透過間接的自旋交換而引起自旋有序排列並提出間接自旋耦合模型及其物理機制,最後成功的製作出具有結構靈活性和室溫鐵磁性的磁性有機半導體薄膜,最後通過超導量子干涉磁化儀量測出其磁滯曲線等特性,並且成功達到最大的矯頑力為 257.6 Oe。
In the first part, the interfaces between dielectric films and organic semiconductors are used as carrier traps in organic memory devices. The trapping and releasing capabilities of carriers must be controlled in memory devices, but the memory windows of these devices are limited by the carriers’ erasing capability. Here, a series of nano-pentacene films were inserted within n-type dioctyl perylene tetracarboxylic diimide (PTCDI-C13) semiconductor layers near the interface between a dielectric film and an organic semiconductor to form field-effect type memory devices with nano-p-n junctions. The function of the nano-p-n junctions near the interfaces were to increase the minorities (i.e., holes) which can effectively erase the accumulated electrons at the interface during the erasing process. We achieved a maximum memory window of 48.9 V when a 5 nm-thick pentacene film was inserted into the PTCDI-C13 near the interface and the memory device was operated under the programming process of 90 V and erasing process of −90 V. Kelvin probe force and noncontact atomic force microscopy were used in the investigation of the monolayer growths of pentacene and PTCDI-C13 and interface properties. Although the thickness of the pentacene film reached 10 nm, an incomplete layer formed, which was not only a supporter of the minority during the erasing process but also a transmitter of electrons during the programming process. Accordingly, a wide memory window was achieved by the nano-p-n heterojunction field-effect memory transistor. This high-performance organic memory device has potential applications in fresh-type memory devices.
In the second part, low-voltage organic memory transistors (LOMTs) as data storage units are crucial for the advancements of future flexible electronics. However, charge storage mechanism remains a great challenge. In this work, we used poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-C14) as the active layer and incorporated poly(methyl methacrylate) (PMMA) with the PBTTT-C14 through a simple blending process to fabricate LOMTs with porous structure. The function of the porous structure was to improve the carrier traps, which can effectively capture the holes at the charge trapping regions during the programming process. A maximum threshold voltage shift of 1.01 V was achieved when the weight ratio of PBTTT-C14 and PMMA is 7: 3, and the LOMTs were operated under the programming process of −4 V/ 1 s. Impedance-admittance analyses were used to investigate the interfacial trap density of charge trapping regions, which is a supporter of the programming capability of LOMTs. An ultrathin dioctyl perylene tetracarboxylic diimide film was deposited on the active layer with porous structure in LOMTs. This film can increase the carriers’ erasing capability. A wide memory window of 1.64 V was obtained in LOMTs when the devices are operated under the erasing process of bias pulse of 3 V/ 1 s with the assistance of 2.5 mW/cm2 light irradiation. This study facilitates the development of high-performance LOMT device in fresh-type memory.
In the third part, toward future flexible spin electronics applications, magnetic semiconductors with structural flexibility is indispensable feature. In this case, we introduce diluted magnetic ingredients into an organic semiconductor, pentacene, to form a diluted magnetic organic semiconductor (DMOS). The first observation for ferromagnetic Ni-doped pentacene semiconductors at room temperature in the field of semiconductor spintronics has been report in this study. To date, the mechanism of DMOSs with ferromagnetism is not understood yet, especially to enhance its Curie temperature above room temperature. Here, we demonstrate dopants of Ni atoms and modulation of growth temperature in the DMOS films for achieving room-temperature ferromagnetic properties in a series of DMOS films, one of which the maximum coercivity is 257.6 Oe. The detection of spin exchange between Ni atom and pentacene molecule is achieved through the magnetic hysteresis obtained by using superconducting quantum interference device magnetometer. We verify the effectiveness of this spin coupling through the magnetic force microscope, Raman spectroscopy, scanning Kelvin probe microscopy, and theoretical simulation. For the mechanism of room-temperature ferromagnetic ordering of spins due to the exchange force indirectly, a model for indirect spin exchange coupling between Ni atoms is proposed, for which we believe the π-electrons of pentacene molecules could support the spin coupling of electron of Ni atoms. Our findings pave the way forward to promise brand-new spintronic devices with structural flexibility and room-temperature ferromagnetism.
[1] Letheby H.; M.B.; F.L.S.; &c On the Physiological Properties of Nitro-Benzole and Aniline. 1863.
[2] Goppelsroeder F. Die internationale elektrotechnische Ausstellung 1891, 18, 987-1047.
[3] Kallmann H.; Pope M. D Positive Hole Injection into Organic Crystals. The journal of chemical Physics. 1959, 32, 300.
[4] Shirakawa H.; Louis E. J.; MacDiarmid A. G.; Chiang C. K.; Heeger A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun. 1977, 578-580.
[5] Sliva P. O.; Dir G.; Griffiths C. Bistable switching and memory devices. J Non Cryst Solids. 1970, 2, 316-333.
[6] Tsumura A.; Koezuka H.; Ando T. Macromolecular electronic device: field‐effect transistor with a polythiophene thin film. Appl. Phys. Lett. 1986, 49, 1210.
[7] Chou, Y. H.; Chang, H. C.; Liu, C. L.; Chen, W. C. Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem. 2015, 6, 341-52.
[8] Baeg, K. J.; Khim, D.; Kim, J.; Yang, B. D.; Kang, M.; Jung, S. W.; You, I. K.; Kim, D. Y.; Noh, Y. Y. High-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible NAND flash memory. Adv. Funct. Mater. 2012, 22, 2915-26.
[9] Langer, R.; Blonski, P.; Hofer, C.; Lazar, P.; Mustonen, K.; Meyer, J. C.; Susi, T.; Otyepka, M. Tailoring Electronic and Magnetic Properties of Graphene by Phosphorus Doping. ACS Appl. Mater. Interfaces 2020, 12, 30, 34074–34085.
[10] Dediu, V. A.; Hueso, L. E.; Bergenti, I.; Taliani, C. Spin routes in organic semiconductors. Nat. Mater. 2009, 8, 707–716.
[11] Tran, T. L. A.; Cakir, D.; Wong, P. K. J.; Preobrajenski, A. B.; Brocks, G.; van der Wiel, W. G.; de Jong, M. P. Magnetic Properties of bcc-Fe(001)/C-60 Interfaces for Organic Spintronics. ACS Appl. Mater. Interfaces 2013, 5, 837–841.
[12] Awschalom, D. D.; Flatte, M. E. Challenges for semiconductor spintronics. Nat. Phys. 2007, 3, 153–159.
[13] Sun, D. L.; Ehrenfreund, E.; Vardeny, Z. V. The first decade of organic spintronics research. Commun. Chem. 2014, 50, 1781–1793.
[14] Dankert, A.; Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 2017, 8, No. 16093.
[15] Nishizawa, N.; Nishibayashi, K.; Munekata, H. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1783–1788.
[16] Wang, K. L.; Alzate, J. G.; Amiri, P. K. Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D 2013, 46, No. 074003.
[17] Czap, G.; Wagner, P. J.; Xue, F.; Gu, L.; Li, J.; Yao, J.; Wu, R. Q.; Ho, W. Probing and imaging spin interactions with a magnetic single-molecule sensor. Science 2019, 2, 673–677.
[18] Sharma, P.; Gupta, A.; Rao, K. V.; Owens, F. J.; Sharma, R.; Ahuja, R.; Guillen, J. M. O.; Johansson, B.; Gehring, G. A. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2003, 2, 673–677.
[19] Yan, G. Y.; Wang, Y. Z.; Zhang, Z. Y.; Li, J.; Carlos, C.; German, L. N.; Zhang, C. Y.; Wang, J. Y.; Voyles, P. M.; Wang, X. D. Enhanced Ferromagnetism from Organic-Cerium Oxide Hybrid Ultrathin Nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 44601–44608.
[20] Bandyopadhyay, A.; Neogi, S. K.; Paul, A.; Meneghini, C.; Dasgupta, I.; Ray, S. Effect of Ni doping on the magnetic and electronic properties of half heusler Cu1-xNixMnSb alloys. J. Alloys Compd. 2018, 764, 656–664.
[21] Tanaka, M.; Ohya, S.; Hai, P. N. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport. Appl. Phys. Rev. 2003, 1, No. 011102.
[22] Mansour, S. A.; Farha, A. H.; Tahoun, B. A.; Elsad, R. A. Novel magnetic polyaniline nanocomposites based on as-synthesized and surface modified Co-doped ZnO diluted magnetic oxide (DMO) nanoparticles. Mater. Sci. Eng. B 2021, 265, No. 115032.
[23] Mondal, A. K.; Brown, N.; Mishra, S.; Makam, P.; Wing, D.; Gilead, S.; Wiesenfeld, Y.; Leitus, G.; Shimon, L. J. W.; Carmieli, R.; Ehre, D.; Kamieniarz, G.; Fransson, J.; Hod, O.; Kronik, L.; Gazit, E.; Naaman, R. Long-Range Spin-Selective Transport in Chiral Metal-Organic Crystals with Temperature-Activated Magnetization. ACS NANO 2020, 14, 16624–16633.
[24] Dong, R. H.; Zhang, Z. T.; Tranca, D. C.; Zhou, S. Q.; Wang, M. C.; Adler, P.; Liao, Z. Q.; Liu, F.; Sun, Y.; Shi, W. J.; Zhang, Z.; Zschech, E.; Mannsfeld, S. C. B.; Felser, C.; Feng, X. L. A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat. Commun. 2018, 9, No. 2637.
[25] Dhara, B.; Jha, P. K.; Gupta, K.; Bind, V. K.; Ballav, N. Diamagnetic Molecules Exhibiting Room-Temperature Ferromagnetism in Supramolecular Aggregates. J. Phys. Chem. C 2017, 121, 12159–12167.
[26] Nakagawa, T.; Yuan, Z.; Zhang, J.; Yusenko, K. V.; Drathen, C.; Liu, Q. Q.; Margadonna, S.; Jin, C. Q. Structure and magnetic property of potassium intercalated pentacene: observation of superconducting phase in KxC22H14. J. Phys. Condens. Matter 2016, 28, No. 484001.
[27] Valentin, C. B. S.; Silva, R. L. D. E.; Banerjee, P.; Franco, A. Investigation of Fe-doped room temperature dilute magnetic ZnO semiconductors. Mater. Sci. Semicond. Process 2019, 96, 122–126.
[28] Dhara, B.; Tarafder, K.; Jha, P. K.; Panja, S. N.; Nair, S.; Oppeneer, P. M.; Ballav, N. Possible Room-Temperature Ferromagnetism in Self-Assembled Ensembles of Paramagnetic and Diamagnetic Molecular Semiconductors. J. Phys. Chem. Lett. 2016, 7, 4988–4995.
[29] Chou, W. Y.; Lin, Y. S.; Kuo, L. L.; Liu, S. J.; Cheng, H. L.; Tang, F. C. Light sensing in photosensitive, flexible n-type organic thin-film transistors. J. Mater. Chem. C 2014, 2, 626–632.
[1] Han, S.-T.; Zhou, Y.; Roy V. A. L. Towards the Development of Flexible Non-Volatile Memories. Adv. Mater. 2013, 25, 5425−5449.
[2] Chou, W.-Y.; Lin, Y.-S.; Kuo, L.-L.; Liu, S.-J.; Cheng, H.-L.; Tang, F.-C. Light sensing in photosensitive, flexible n-type organic thin-film transistors. J. Mater. Chem. C 2014, 2, 626−632.
[3] Xu, Y.; Liu, C.; Khim, D.-Y.; Noh, Y.-Y. Development of high-performance printed organic field-effect transistors and integrated circuits. Phys. Chem. Chem. Phys. 2015, 17, 26553−26574.
[4] Park, Y.-S.; Lee, J.-S. Design of an Effi cient Charge-Trapping Layer with a Built-In Tunnel Barrier for Reliable Organic-Transistor Memory. Adv. Mater. 2014, 27, 706−711.
[5] Shin, C.-C.; Chiu, Y.-C.; Lee, W.-Y.; Chen, J.-Y; Chen, W.-C. Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices. Adv. Funct. Mater. 2015, 25, 1511–1519.
[6] Xu, M.-L.; Guo, S.-X.; Xu, T.; Xie, W.-F.; Wang, W. Low-voltage programmable/erasable high performance flexible organic transistor nonvolatile memory based on a tetratetracontane passivated ferroelectric terpolymer. Org. Electron. 2019, 64, 62−70.
[7] Chou, Y.-H.; Chang, H.-C.; Liu, C.-L.; Chen, W.-C. Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem. 2015, 6, 341–352.
[8] Yi, M.-D.; Xie, M.; Shao, Y.-Q.; Li, W.; Ling, H.-F.; Xie, L.-H.; Yang, T.; Fan, Q.-L.; Zhu, J.-L.; Huang, W. Light programmable/erasable organic field-effect transistor ambipolar memory devices based on the pentacene/PVK active layer. J. Mater. Chem. C 2015, 3, 5220−5225.
[9] Wang, Y.-F.; Tsai, M.-R.; Lin, Y.-S.; Wu, F.-C.; Lin, C.-Y.; Cheng, H.-L.; Liu, S.-J.; Tang, F.-C.; Chou, W.-Y. High-response organic thin-film memory transistors based on dipole-functional polymer electret layers. Org. Electron. 2015, 26, 359−364.
[10] Baeg, K.-J.; Noh, Y.-Y.; Sirringhaus H.; Kim, D.-Y. Controllable Shifts in Threshold Voltage of Top-Gate Polymer Field-Effect Transistors for Applications in Organic Nano Floating Gate Memory. Adv. Funct. Mater. 2010, 20, 224–230.
[11] Heremans, P.; Gelinck, G. H.; Muller, R.; Baeg, K.-J.; Kim, D.-Y.; Noh, Y.-Y. Polymer and Organic Nonvolatile Memory Devices. Chem. Mater. 2011, 23, 341–358.
[12] Zaumseil J.; Sirringhaus, H. Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chem. Rev. 2007, 107, 1296−1323.
[13] Wang, Y.-F.; Tsai, M.-R.; Wang, P.-Y.; Lin, C.-Y.; Cheng, H.-L.; Tang, F.-C.; Hsu, S. L.-C.; Hsu, C.-C.; Chou, W.-Y. Controlling carrier trapping and relaxation with a dipole field in an organic field-effect device. RSC Adv. 2016, 6, 77735.
[14] Chiu, Y.-C.; Chen, T.-Y.; Chen, Y.-E.; Satoh, T.; Kakuchi, T.; Chen, W.-C. High-Performance Nonvolatile Organic Transistor Memory Devices Using the Electrets of Semiconducting Blends. ACS Appl. Mater. Interfaces 2014, 6, 12780−12788.
[15] Hafsi, B.; Boubaker, A.; Guerin, D.; Lenfant, S.; Kalbouss, A.; Lmimouni, K. N-type polymeric organic flash memory device: Effect of reduced graphene oxide floating gate. Org. Electron. 2017, 45, 81−88.
[16] Chou, Y.-H.; Takasugi, S.; Goseki, R.; Ishizone, T.; Chen, W.-C. Nonvolatile organic field-effect transistor memory devices using polymer electrets with different thiophene chain lengths. Polym. Chem. 2014, 5, 1063–1071.
[17] Murari, N. M.; Hwang, Y.-J.; Kim, F. S.; Jenekhe, S. A. Organic nonvolatile memory devices utilizing intrinsic chargetrapping phenomena in an n-type polymer semiconductor. Org. Electron. 2016, 31, 104−110.
[18] Tran, C. M.; Sakai, H.; Kawashima, Y.; Ohkubo, K.; Fukuzumi, S.; Murata, H. Multi-level non-volatile organic transistor-based memory using lithium-ion-encapsulated fullerene as a charge trapping layer. Org. Electron. 2017, 45, 234−239.
[19] Wang, C.; Liu, Z.-Y.; Li, M.-S.; Xie, Y.-J.; Li, B.-S.; Wang, S.; Xue, S.; Peng, Q.; Chen, B.; Zhao, Z.-J.; Li, Q.-Q.; Ge, Z.-Y.; Li, Z. The marriage of AIE and interface engineering: convenient synthesis and enhanced photovoltaic performance. Chem. Sci. 2017, 8, 3750.
[20] Lee, C.-T.; Lin, Y.-M. Performance improvement mechanisms of pentacene-based organic thin-film transistors using TPD buffer layer. Org. Electron. 2013, 14, 1952−1957.
[21] Shin, E.-Y.; Lee, J.-H.; Choi, Y.; Kim, M.-H. Enhanced charge injection in 6, 13-bis (triisopropylsilylethylnyl)-pentacene field-effect transistors with a rhenium oxide buffer layer. Semicond. Sci. Technol. 2019, 34, 035008.
[22] Kim, K.-Y.; Jeong, H. J.; Kim, F. S. Use of a cross-linkable or monolayer-forming polymeric buffer layer on PCBM-based n-channel organic fieldeffect transistors. Polym. Bull. 2016, 73, 2493–2500.
[23] Kim, F. S.; Hwang, D.-K.; Kippelen, B.; Jenekhe, S. A. Enhanced carrier mobility and electrical stability of n-channel polymer thin film transistors by use of low-k dielectric buffer layer. Appl. Phys. Lett. 2011, 99, 173303.
[24] Khim, D.-Y.; Shin, E.-Y.; Xu, Y.; Park, W.-T.; Jin, S.-H.; Noh, Y.-Y. Control of Threshold Voltage for Top-Gated Ambipolar Field-Effect Transistor by Gate Buffer Layer. ACS Appl. Mater. Interfaces 2016, 8, 17416−17420.
[25] Huang, W.-C.; Cheng, P.; Yang. Y. M.; Li, G.; Yang, Y. High-Performance Organic Bulk-Heterojunction Solar Cells Based on Multiple-Donor or Multiple-Acceptor Components. Adv. Mater. 2018, 30, 1705706.
[26] Lu, L.-Y.; Zheng, T.-Y.; Wu, Q.-H.; Schneider, A. M.; Zhao, D.-L.; Yu, L.-P. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 12666−12731.
[27] Tang, F.-C.; Wu, F.-C.; Yen, C.-T.; Chang, J.; Chou, W.-Y.; Chang, S.-H. G.; Cheng, H.-L. A nanoscale study of charge extraction in organic solar cells: the impact of interfacial molecular configurations. Nanoscale 2015, 7, 104–112.
[28] Nolasco, J. C.; Castro-Carranza, A.; Leon, Y. A.; Briones-Jurado, C.; Gutowski, J.; Parisi, J.; Hauff E. V. Understanding the open circuit voltage in organic solar cells on the basis of a donor-acceptor abrupt (p-n++) heterojunction. Sol. Energy 2019, 184, 610–619.
[29] Dasgupta, U.; Bera, A.; Pal, A. J. Band Diagram of Heterojunction Solar Cells through Scanning Tunneling Spectroscopy. ACS Energy Lett. 2017, 2, 582−591.
[30] Xiang, L.-Y.; Ying, J.; Han, J.-H.; Zhang, L.-T.; Wang, W. High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4-vinyl phenol) charge trapping layer based on a pn-heterojunction active layer. Appl. Phys. Lett. 2016, 108, 173301.
[31] Guo, Y.-L. Zhang, J.; Yu, G.; Zheng, J.; Zhang, L.; Zhao, Y.; Wen, Y.-G.; Liu, Y.-Q. Lowering programmed voltage of organic memory transistors based on polymer gate electrets through heterojunction fabrication. Org. Electron. 2012, 13, 1969−1974.
[32] Zhou, J.-L.; Jiang, Y.-Y.; Wang, Z.; Hu, S.-D.; Gan, P.; Shen, X.-Q. Influence of underneath pentacene thickness on performance of p-n heterojunction organic thin film transistors. Eur. Phys. J. Appl. Phys. 2016, 73, 20201.
[33] Fan, H.-D.; Shi, W.; Yu, X.-G.; Yu, J.-S. High performance nitrogen dioxide sensor based on organic field-effect transistor utilizing ultrathin CuPc/PTCDI-C8 heterojunction. Synth. Met. 2016, 211, 161−166.
[34] Ahn, K.; Kim, J. B.; Park, H.-J.; Kim, H.-J.; Lee, M. H.; Kim, B. J.; Cho, J. H.; Kang, M. S.; Lee, D. R. Enhancing crystallinity of C60 layer by thickness-control of underneath pentacene layer for high mobility C60/pentacene ambipolar transistors. Appl. Phys. Lett. 2013, 102, 043306.
[35] Yang, H.-C.; Yang, C.-W.; Kim, S. H.; Jang, M.; Park, C. E. Dependence of Pentacene Crystal Growth on Dielectric Roughness for Fabrication of Flexible Field-Effect Transistors. ACS Energy Lett. 2017, 2, 582−591.
[36] Shtein, M.; Mapel, J.; Benziger, J. B.; Stephen, R. F. Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors. Appl. Phys. Lett. 2002, 81, 268−270.
[37] Zhu, H.; Li, Q.-L.; She, X.-J.; Wang, S.-D. Surface roughening evolution in pentacene thin film growth. Appl. Phys. Lett. 2011, 98, 243304.
[38] Chou, W.-Y.; Ho, T.-Y.; Cheng, H.-L.; Tang, F.-C.; Chen, J. H.; Wang, Y.-W. Gate field induced ordered electric dipoles in a polymer dielectric for low-voltage operating organic thin-film transistors. RSC Adv. 2013, 3, 20267−20272.
[39] Lazykov, M.; Erouel, M.; Tardy, J.; Skryshevsky, V. A.; Phaner-Goutorbe, M. Surf. Sci. 2013, 607, 170−173.
[40] Kafer, D.; Ruppel, L.; Witte, G. Growth of pentacene on clean and modified gold surfaces. Phys. Rev. B 2007, 75, 085309.
[41] Wang, S.-D.; Dong, X.; Lee, C.-S.; Lee, S.-T. Molecular Orientation and Film Morphology of Pentacene on Native Silicon Oxide Surface. J. Phys. Chem. B 2005, 109, 9892−9896.
[42] Wu, Y.-F.; Haugstad, G.; Frisbie, C.-D. Electronic Polarization at Pentacene/ Polymer Dielectric Interfaces: Imaging Surface Potentials and Contact Potential Differences as a Function of Substrate Type, Growth Temperature, and Pentacene Microstructure. J. Phys. Chem. C 2014, 118, 2487−2497.
[43] Neff, J. L.; Milde, P.; Leon, C. P.; Kundrat, M. D.; Eng, L. M.; Jacob, C. R.; Hoffmann-Vogel, R. Epitaxial Growth of Pentacene on Alkali Halide Surfaces Studied by Kelvin Probe Force Microscopy. ACS Nano 2014, 8, 3294–3301.
[44] Chen, L.; Ludeke, R.; Cui, X.-D.; Schrott, A. G.; Kagan, C. R.; Brus, L. E. Electrostatic Field and Partial Fermi Level Pinning at the Pentacene-SiO2 Interface. J. Phys. Chem. B 2005, 109, 1834–1838.
[45] Yu, S. H.; Kang, B.; An, G.; Kim, B.-S.; Lee, M. H.; Kang, M. S.; Kim, H.-J.; Lee, J. H.; Lee, S.; Cho, K.; Lee, J. Y.; Cho, J. H. pn-Heterojunction Effects of Perylene Tetracarboxylic Diimide Derivatives on Pentacene Field-Effect Transistor. ACS Appl. Mater. Interfaces 2015, 7, 2025−2031.
[1] Jiang, B. Y.; Vegiraju, S.; Chiang, A. S. T.; Chen, M. C.; Liu, C. L. Low-voltage-driven organic phototransistors based on a solution-processed organic semiconductor channel and high k hybrid gate dielectric. J. Mater. Chem. C 2017, 5, 9838-42.
[2] Gong, L.; Gobel, H. Low-voltage organic nonvolatile memory transistors with single-layer and bilayer polymeric electrets. IEEE Trans. Electron Devices 2019, 66, 4348-53.
[3] Lee, C.; Jeong, J.; Kim, H.; Kim, Y. Ionic nanocluster-evolved polymers for low-voltage flexible organic nonvolatile memory transistors. Mater. Horizons 2019, 6, 1899-1904.
[4] Kang, M.; Lee, S. A.; Jang, S.; Hwang, S.; Lee, S. K.; Bae, S.; Hong, J. M.; Lee, S. H.; Jeong, K. U.; Lim, J. A.; Kim, T. W. Low-voltage organic transistor memory fiber with a nanograined organic ferroelectric film. ACS Appl. Mater. Interfaces 2019, 11, 22575-82.
[5] Zhang, P.; Guo, Y.; Cao, K. Y.; Yi, M. D.; Huang, L. Y.; Shi, W.; Zhu, J. T. An organic field effect transistor memory adopting octadecyltrichlorosilane self-assembled monolayer. J. Phys. D: Appl. Phys. 2021, 54, 095106.
[6] Wang, Y. F.; Tsai, M. R.; Wang, P. Y.; Lin, C. Y.; Cheng, H. L.; Tang, F. C.; Hsu, S. L. C.; Hsu, C. C.; Chou, W. Y. Controlling carrier trapping and relaxation with a dipole field in an organic field-effect device. RSC Adv. 2016, 6, 77735-44.
[7] Abe, H., Hattori, R., Nagase, T., Higashinakaya, M., Tazuhara, S., Shiono, F., Kobayashi, T., Naito, H. Enhanced performance of solution-processable floating-gate organic phototransistor memory for organic image sensor applications. Appl. Phys. Express 2021, 14, 041007.
[8] Xu, T., Guo, S. X., Qi, W. H., Li, S. Z., Xu, M. L., Xie, W. F., Wang. W. High-performance flexible organic thinfilm transistor nonvolatile memory based on molecular floating-gate and pnheterojunction channel laye. Appl. Phys. Lett. 2020, 116, 023301.
[9] Lan, S. Q., Zhong, J. F., Li, E. L., Yan, Y. J., Wu, X. M., Chen, Q. Z., Lin, W. K., Chen, H. P., Guo, T. L. High-performance nonvolatile organic photoelectronic transistor memory based on bulk heterojunction structure. ACS Appl. Mater. Interfaces 2020, 12, 31716-24.
[10] Pan, Y. C., Yu. G. Multicomponent blend systems used in organic field-effect transistors: charge transport properties, large-area preparation, and functional devices. Chem. Mater. 2021, 33, 2229-57.
[11] Dashitsyrenova, D. D., Lvov, A. G., Frolova, L. A., Kulikov, A. V., Dremova, N. N., Shirinian, V. Z., Aldoshin, S. M., Krayushkin, M. M., Troshin, P. A. Molecular structure–electrical performance relationship for OFET-based memory elements comprising unsymmetrical photochromic diarylethenes. J. Mater. Chem. C 2019, 7, 6889-94.
[12] Pei, K., Ren, X. C., Zhou, Z. W., Zhang, Z. C., Ji, X. D., Chan, P. K. L. A high-performance optical memory array based on inhomogeneity of organic semiconductors. Adv. Mater. 2018, 30, 1706647.
[13] Chiang, Y. C., Hung, C. C., Lin, Y. C., Chiu, Y. C., Isono, T., Satoh, T., Chen, W. C. High-performance nonvolatile organic photonic transistor memory devices using conjugated rod–coil materials as a floating gate. Adv. Mater. 2020, 32, 2002638.
[14] Chen, Z. T., Sheleg, G., Shekhar, H., Tessler, N. Structure−property relation in organic−metal oxide hybrid phototransistors. Appl. Mater. Interfaces 2020, 12, 15430-38.
[15] Xiang, L. Y., Ying, J., Han, J. H., Zhang, L. T., Wang, W. High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4- vinyl phenol) charge trapping layer based on a pn-heterojunction active layer. Appl. Phys. Lett. 2016, 108, 173301.
[16] Yu, S. H., Kang, B., An, G., Kim, B., Lee, M. H., Kang, M. S., Kim, H., Lee, J. H., Lee, S., Cho, K., Lee, J. Y., Cho, J. H. pn-Heterojunction effects of perylene tetracarboxylic diimide derivatives on pentacene field-effect transistor. Appl. Mater. Interfaces 2015, 7, 2025-31.
[17] Kobashi, K., Hayakawa, R., Chikyow, T., Wakayama, Y. Negative differential resistance transistor with organic p-n heterojunction. Adv. Electron. Mater. 2017, 3, 1700106.
[18] Chiu, Y. C., Chen, T. Y., Chen, Y. G., Satoh, T., Kakuchi, T., Chen. W. C. High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends. Appl. Mater. Interfaces 2014, 6, 12780-88.
[19] Wu, X. S., Feng, S. Y., Shen, J. H., Huang, W., Li, C., Li, C. C., Sui, Y., Huang, W. G. Nonvolatile transistor memory based on a high‑k dielectric polymer blend for multilevel data storage, encryption, and protection. Chem. Mater. 2020, 32, 3641-50.
[20] Kim, S. W., Park, S., Lee, S., Kim, D., Lee, G., Son, J., Cho, K. Stretchable mesh-patterned organic semiconducting thin films on creased elastomeric substrates. Adv. Funct. Mater. 2021, 2010870.
[21] Xu, M. L., Xiang, L. Y., Xu, T., Wang, W., Xie, W. F., Zhou, D. Y. Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric. Appl. Phys. Lett. 2017, 111, 183302.
[22] Shih, .C C., Chiu, Y. C., Lee, W. Y., Chen, J. Y., Chen, W. C. Conjugated polymer nanoparticles as nano floating gate electrets for high performance nonvolatile organic transistor memory devices. Adv. Funct. Mater. 2015, 25, 1511-19.
[23] Moon, S. J., Robin, M., Wenlin, K., Yann, M., Bae, B. S., Mohammed-Brahim, T., Jacques, E., Harnois, M. Morphological impact of insulator on inkjet-printed transistor. Flex. Print. Electron. 2017, 2, 035008.
[24] Chou, W. Y., Ho, T. Y., Cheng, H. L., Tang, F. C., Chen, J. H., Wang, Y. W. Gate field induced ordered electric dipoles in a polymer dielectric for low-voltage operating organic thin-film transistors. RSC Adv. 2013, 3, 20267-72.
[1] Riminucci, A.; Graziosi, P.; Calbucci, M.; Cecchini, R.; Prezioso, M.; Borgatti, F.; Bergenti, I.; Dediu, V. A. Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices. Appl. Phys. Lett. 2018, 112, No. 142401.
[2] Han, X. F.; Mi, W. B.; Wang, X. C. Large magnetoresistance and spin-polarized photocurrent in La2/3Sr1/3MnO3(Co)/quaterthiophene/La2/3Sr1/3MnO3 organic magnetic tunnel junctions. J. Mater. Chem. C 2019, 7, 4079–4088.
[3] Zheng, N. H.; Lin, Z. Z.; Zheng, Y. H.; Li, D.; Yang, J.; Zhang, W. F.; Wang, L. P.; Yu, G. Room-temperature stable organic spin valves using solution -processed ambipolar naphthalenediimide-based conjugated polymers. Org. Electron. 2020, 81, No. 105684.
[4] Fang, P. H.; Wu, F. C.; Sheu, H. S.; Lai, J. H.; Cheng, H. L.; Chou, W. Y. Analysis of ultrathin organic inverters by using in situ grazing incidence X-ray diffraction under high bending times and low voltage. Org. Electron. 2021, 88, No. 106002.
[5] Fan, J. P.; Guerrero, M.; Carretero-Genevrier, A.; Baro, M. D.; Surinach, S.; Pellicer, E.; Sort, J. Evaporation-induced self-assembly synthesis of Ni-doped mesoporous SnO2 thin films with tunable room temperature magnetic properties. J. Mater. Chem. C 2017, 5, 5517–5527.
[6] Acton, O.; Dubey, M.; Weidner, T.; O'Malley, K. M.; Kim, T. W.; Ting, G. G.; Hutchins, D.; Baio, J. E.; Lovejoy, T. C.; Gage, A. H.; Castner, D. G.; Ma, H.; Jen, A. K. Y. Simultaneous Modification of Bottom-Contact Electrode and Dielectric Surfaces for Organic Thin-Film Transistors Through Single-Component Spin-Cast Monolayers. Adv. Funct. Mater. 2011, 21, 1476–1488.
[7] Chiu, L. Y.; Cheng, H. L.; Wang, H. Y.; Chou, W. Y.; Tang, F. C. Manipulating the ambipolar characteristics of pentacene-based field-effect transistors. J. Mater. Chem. C 2014, 2, 1823–1829.
[8] Knipp, D.; Street, R. A.; Volkel, A. R. Morphology and electronic transport of polycrystalline pentacene thin-film transistors. Appl. Phys. Lett. 2003, 82, No. 3907.
[9] Cheng, H. L.; Mai, Y. S.; Chou, W. Y.; Chang, L. R.; Liang, X. W. Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films. Adv. Funct. Mater. 2007, 17, 3639–3649.
[10] Mattheus, C. C.; de Wijs, G. A.; de Groot, R. A.; Palstra, T. T. M. Modeling the polymorphism of pentacene. J. Am. Chem. Soc. 2003, 125, 6323–6330.
[11] Tak, Y. J.; Keene, S. T.; Kang, B. H.; Kim, W. G.; Kim, S. J.; Salleo, A.; Kim, H. J. Multifunctional, Room-Temperature Processable, Heterogeneous Organic Passivation Layer for Oxide Semiconductor Thin-Film Transistors. ACS Appl. Mater. Interfaces 2020, 12, 2615–2624.
[12] Duim, H.; Fang, H. H.; Adjokatse, S.; ten Brink, G. H.; Marques, M. A. L.; Kooi, B. J.; Blake, G. R.; Botti, S.; Loi, M. A. Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylamine. Appl. Phys. Rev. 2019, 6, No. 031401.
[13] Koseoglu, Y.; Durmaz, Y. C.; Yilgin, R. Rapid synthesis and room temperature ferromagnetism of Ni doped ZnO DMS nanoflakes. Ceram. Int. 2014, 40, 10685–10691.
[14] Raveendran, N. L.; Pandian, R.; Murugesan, S.; Asokan, K.; Kumar, R. T. R. Phase evolution and magnetic properties of DC sputtered Fe-Ga (Galfenol) thin films with growth temperatures. J. Alloys Compd. 2017, 704, 420–424.
[15] Lavin, R.; Denardin, J. C.; Escrig, J.; Altbir, D.; Cortes, A.; Gomez, H. Angular dependence of magnetic properties in Ni nanowire arrays. J. Appl. Phys. 2009, 106, No. 103903.
[16] Kanaki, T.; Koyama, T.; Chiba, D.; Ohya, S.; Tanaka, M. Spin-dependent transport and current modulation in a current-in-plane spin-valve field-effect transistor. Appl. Phys. Lett. 2016, 109, No. 152403.
[17] Cambel, V.; Precner, M.; Fedor, J.; Soltys, J.; Tobik, J.; Scepka, T.; Karapetrov, G. High resolution switching magnetization magnetic force microscopy. Appl. Phys. Lett. 2013, 102, No. 062405.
[18] Chen, Z. T.; Yang, X. L.; Dai, T.; Wang, C. D.; Wen, Z. C.; Han, B. S.; Zhang, Y. H.; Lin, Z. Y.; Qian, Y. Z.; Zhang, H.; Zhang, G. Y. Direct observation of room-temperature ferromagnetism of single-phase Ga0.962Mn0.038N by magnetic force microscopy. J. Appl. Phys. 2010, 108, No. 093913.
[19] Cheng, H. L.; Liang, X. W.; Chou, W. Y.; Mai, Y. S.; Yang, C. Y.; Chang, L. R.; Tang, F. C. Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors. Org. Electron. 2009, 10, 289–298.
[20] Ieuji, R.; Goushi, K.; Adachi, C. Triplet-triplet upconversion enhanced by spin-orbit coupling in organic light-emitting diodes. Nat. Commun. 2019, 10, No. 5283.
[21] Weiss, L. R.; Bayliss, S. L.; Kraffert, F.; Thorley, K. J.; Anthony, J. E.; Bittl, R.; Friend, R. H.; Rao, A.; Greenham, N. C.; Behrends, J. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 2017, 13, 176–181.
[22] Chou, W. Y.; Peng, S. K.; Wu, F. C.; Sheu, H. S.; Wang, Y. F.; Huang, P. K.; Cheng, H. L. Memory characteristics of organic field-effect memory transistors modulated by nano-p-n junctions. J. Mater. Chem. C 2020, 8, 7501–7508.
[23] DeJarld, M.; Campbell, P. M.; Friedman, A. L.; Currie, M.; Myers-Ward, R. L.; Boyd, A. K.; Rosenberg, S. G.; Pavunny, S. P.; Daniels, K. M.; Gaskill, D. K. Surface potential and thin film quality of low work function metals on epitaxial graphene. Sci. Rep. 2018, 8, No. 16487.
[24] Broch, K.; Burker, C.; Dieterle, J.; Krause, S.; Gerlach, A.; Schreiber, F. Impact of molecular tilt angle on the absorption spectra of pentacene: perfluoropentacene blends. Phys. Status Solidi-Rapid Res. Lett. 2013, 7, 1084–1088.
[25] Hernangomez-Perez, D.; Schlor, J.; Egger, D. A.; Patera, L. L.; Repp, J.; Evers, F. Reorganization energy and polaronic effects of pentacene on NaCl films. Phys. Rev. B 2020, 102, No. 115419.
校內:2026-10-12公開