簡易檢索 / 詳目顯示

研究生: 李博勝
Lee, Bo-Sheng
論文名稱: 環氧樹脂封膠材料黏彈本構模型建立及封裝翹曲模擬應用
Development of viscoelastic constitutive model of epoxy molding compound and its application to package warpage simulation
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 94
中文關鍵詞: 環氧樹脂封膠黏彈性本構模型數值轉換近似法限制條件
外文關鍵詞: epoxy molding compound, viscoelastic, interconversion, optimization
相關次數: 點閱:132下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代微電子製造中由於印刷電路板和晶片元件厚度的下降以及封裝體接點數不斷增加且間距不斷減少,倘若封裝體本身翹曲量太大或是在連接各元件的過程產生過大的翹曲量變化,印刷電路板(printed circuit board, PCB)高溫迴銲的過程中翹曲變形會使錫球附著困難,將會造成電子系統內部電信、電力傳輸上的問題。因此,封裝體翹曲變形的分析與控制是發展新技術的重點之一。
    分析封裝翹曲方法除了實驗量測外,大多使用有限元素模擬,而模擬之正確與否通常與模型中材料行為之假設有直接關係。過去高分子封裝材料例如環氧樹脂封膠與玻纖基板之本構模型大多以彈性考慮,但隨著高溫迴銲製程對平坦化要求的提高,高溫翹曲模擬預測之準確度要求也隨之提高。為正確的模擬高溫下的翹曲行為,封裝結構中之高分子材料必須考慮其黏彈性本構行為。
    在本論文中為正確描述高分子材料之黏彈本構模型行為,首先用拉伸與扭轉動態機械分析分別求得楊氏儲存模數與剪力儲存模數,再經過模數轉換得時間域下的體積與剪切鬆弛模數以作為有限元素分析中之黏彈模型。然而由於實驗中量測結果可能存有誤差,導致模數轉換後得到不合理的材料行為,因此,本論文發展出一套材料行為擬合最佳化方法,在材料特性滿足理論限制條件下,求得近似於實驗結果的合理材料函數。為驗證此近似材料黏彈性本構模型之正確性,本論文使用有限元素法來模擬封裝體在升降溫中熱機械所造成的翹曲行為並與陰影疊紋法(shadow Moiré)實驗結果相互比對,結果發現以此方法所建立高分子材料黏彈性模型可正確預測封裝體翹曲行為。

    In this thesis, the viscoelastic behaviors of epoxy molding compound (EMC) and laminate substrate are characterized, and the corresponding constitutive models are developed and implemented in finite element simulations to predict warpage evolution of an overmolded ball grid array (BGA) package. Storage modulus mastercurves measured by using dynamic mechanical analyses (DMA) under either cyclic tension or torsion loads were first converted to the relaxation moduli in the Laplace-Carson transform domain by using approximation formula. The transformed Young’s and shear relaxation moduli were then curve fitted by using an optimization procedure with restriction to ensure physically admissible time-dependent Poisson’s ratio. Bulk and shear relaxation moduli were then obtained from the fitted moduli and inverse transformed to the time domain. The numerical finite element model that considers the viscoelastic constitutive behaviors of EMC and substrate was applied to simulate warpage during the surface mount solder reflow process and compared to experimental shadow Moiré measurements. It was found that the viscoelastic model based warpage prediction agrees well to experimental results; while the conventional elastic model based prediction does not.

    中文摘要 I 英文延伸摘要 III 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 符號說明 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 翹曲與應力分析 3 1.3.2 材料特性 5 1.3.3 近似方法 8 1.4 研究目的與方法 9 1.5 論文架構 10 第二章 理論基礎 11 2.1 材料之線黏彈性行為 11 2.1.1 時間相關之行為及基本材料試驗 11 2.1.2 時間-溫度重疊原理 14 2.1.3 線黏彈性材料之基本數學模型 16 2.1.4 線黏彈性材料之本構關係 18 2.2 複數模數 25 2.3 材料模數轉換方法 27 2.3.1 新材料函數近似相互轉換的方法 29 2.4 鬆弛模數模型擬合與最佳化 34 第三章 黏彈三維本構模型 40 3.1 封膠量測數據處理 40 3.1.1 儲存模數主曲線建立 40 3.1.2 玻璃態楊氏模數調整 47 3.1.3 溫度平移函數調整 48 3.1.4 模數轉換 51 3.1.5 封膠鬆弛模數之Prony級數模型 55 3.2 近似封膠鬆弛模數建立 59 3.3 比較與討論 65 3.4 基板量測數據處理 72 3.4.1 儲存模數主曲線建立 72 3.4.2 蒲松比調整 73 3.5 基板一維本構模型建立 74 第四章 有限元素模擬 80 4.1 有限元素模型 80 4.1.1 模型網格 80 4.1.2 材料性質設定 81 4.2 模擬結果與驗證 83 第五章 結論與未來方向 88 參考文獻 90

    [1] R. M. Christensen, Theory of Viscoelasticity: An Introductrion, Second Edition, New York, 1982.
    [2] H. C. Booij and G. P. J. M. Thoone, “Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities,” Rheologica Acta, Vol. 21, pp. 15-24, 1982.
    [3] R. A. Schapery and S. W. Park, “Methods of interconversion between linear viscoelastic material functions. Part II-an approximate analytical method,” International Journal of Solids and Structures, Vol. 36, pp. 1677-1699, 1999.
    [4] I. Emri, B. S. von Bemstorff, R. Cvelbar, and A. Nikonov, “Re-examination of the approximate methods for interconversion between frequency- and time-dependent material functions,” Journal of Non-Newtonian Fluid Mechanics, Vol. 129, pp, 75-84, 2005.
    [5] G. Kelly, C. Lyden, W. Lawton, J. Barrett, A. Saboui, H. Pape, and H. J. B. Peters, “Importance of molding compound chemical shrinkage in the stress and warpage analysis of PQFP’s,” IEEE Transactions on Components, Packaging, and Manufacturing Technology- Part B, Vol. 19,pp. 296-299, 1996.
    [6] D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, W. D. van Driel,
    and H. J. L. Bressers, “Modeling of cure-induced warpage of plastic IC
    packagings,” Proceedings of the 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2004, pp. 33-40, 2004.
    [7] J. E. Luan, “Integrated methodology for warpage prediction of IC
    packages,” Proceedings of the 31st International Conference on International Electronic Manufacturing and Technology, pp. 143-149, 2006.
    [8] Y. K. Kim, R. Peak, and D. Zwemer, “Warpage prediction of ball grid array packaging,” Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition IMECE2007, pp. 257-261, 2007.
    [9] S. Rzepka and A. Muller, “The effect of visco-elasticity on the result accuracy of FEM panel warpage simulations supporting industrial microelectronics packaging,” Proceedings of the International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems EuroSime2007, pp. 1-8, 2007.
    [10] J. de Vreugd, K. M. B. Jansen, A. Xiao, L. J. Ernst, C. Bohm, A. Kessler, H. Preu, and M. Stecher, “Advanced viscoelastic material model for predicting warpage of a QFN panel,” Proceedings of the 58th Electronic Components and Technology Conference, pp. 1635-1640, 2008.
    [11] W. Lin and M. W. Lee, “ PoP/CSP warpage evaluation and viscoelastic modeling,” Proceedings of the 58th Electronic Components and Technology Conference, pp. 1576-1581, 2008.
    [12] J. D. Ferry, Viscoealstic Properties of Polymer, 3rd Edtion, John Wiley and Sons Inc., New York, 1980.
    [13] Y. K. Kim and S. R. White, “ Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polymer Engineering and Science, Vol. 36, pp. 2852-2862, 1996.
    [14] P. Shrotriya and N. R. Sottos, “Creep and relaxation behavior of woven glass/epoxy substrate for multilayer circuit board applications,” Polymer Composites, Vol. 19, pp. 567-578, 1998.
    [15] D. J. O’Brien, P. T. Mather, and S. R. White, “Viscoelastic properties of an epoxy resin during cure,” Journal of Composite Materials, Vol. 35, pp. 883-904, 2001.
    [16] H. H. Hilton, “Comments regarding “Viscoelastic properties of an epoxy resin during cure” by D. J. O’Brien, P. T. Mather and S. R. White.,” Journal of Composite Materials, Vol. 37, pp. 89-94, 2003.
    [17] R. B. R. van Silfhout, J. G. J. Beijer, K. Zhang, and W. D. van Driel,“Modelling methodology for linear elastic compound modelling versus visco-elastic compound modelling,” Proceedings of the 6th. International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronic and Micro-Systems, EuroSimE2005, pp. 483-489, 2005.
    [18] N. Srikanth, “Warpage analysis of epoxy packages using viscoelastic based model,” Journal of Materials Science, Vol. 41, pp. 3773-3780, 2006.
    [19] P. H. Mott, J. R. Dorgan, and C. M. Roland, “The bulk modulus and Poisson's ratio of “incompressible” materials,” Journal of Sound and Vibration, Vol. 312, pp. 572-575, 2008.
    [20] M. K. Saraswat, K. M. B. Jansen, M. D. Patel, L. J. Ernst, C. Bohm, A. Kessler, H. Preu, and M. Stecher, “A Characterization method for viscoelastic bulk modulus of molding compounds,” Proceedings of the 9th. International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE, pp. 1-4, 2008.
    [21] Y. Komoto, “Warpage mechanism of single-sided molded package studied wit h viscoelastic analysis,” Proceedings of the CPMT Symposium Japan, pp. 1-4, 2010.
    [22] Y. K. Kim, I. S. Park, and J. Choi, “Warpage mechanism analyses of strip panel type PBGA chip packaging,” Microelectronics Reliability, Vol. 50, pp. 398-406, 2010.
    [23] H. Lu, X. Zhang, and W. G. Knauss, “Uniaxial, shear and Poisson relaxation and their conversion to bulk relaxation,” Polymer Engineering and Science, Vol. 37, pp. 1053-1064, 1997.
    [24] R. C. Dunne, An Integrated Process Modeling Methodology and Module for Sequential Multilayered High-Density Substrate Fabrication for Microelectronic Packages, Ph. D. Dissertation, Georgia Technology Institute, 2000.
    [25] M. Jerabek, D. Tscharnuter, Z. Major, K. Ravi-Chandar, and R.W. Lang, “Relaxation behavior of neat and particulate filled polypropylene in uniaxial and multiaxial compression,” Mechanics of Time-Dependent Materials, Vol. 14, pp. 47-68, 2010.
    [26] N. W. Tschoegl, W. G. Knauss, and I. Emri, “Poisson’s ratio in linear viscoelasticity-A critical review,” Mechanics of Time-Dependent Materials, Vol. 6, pp. 3-51, 2002.

    無法下載圖示 校內:2017-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE